Изображение предмета формируемое на сетчатке глаза является. Изображение на сетчатке глаза человека

Невозможные фигуры и двойственные изображения не являются чем-то, что не может быть воспринято буквально: они возникают у нас в мозге. Так как процесс восприятия таких фигур следует странным нестандартным путем, наблюдатель приходит к пониманию, что что-то необычное происходит в его голове. Для лучшего понимая процесса, который мы называем "зрением", полезно иметь представление о том, как наши органы чувств (глаза и мозг) преобразуют световые раздражители в полезную информацию.

Глаз как оптическое устройство

Рисунок 1. Анатомия глазного яблока.

Глаз (см. рис. 1) работает подобно фотокамере. Хрусталик (lens) проецирует перевернутое уменьшенное изображение из внешнего мира на сетчатку (retina) – сеть фоточувствительных клеток, расположенных напротив зрачка (pupil) и занимающих более половины площади внутренней поверхности глазного яблока. Как оптический инструмент, глаз долгое время являлся маленькой загадка. В то время как камера фокусируется движением хрусталика ближе или дальше от светочувствительного слоя, его способность к преломлению света настраивается во время аккомодации (адаптации глаза на определенное расстояние). Форма глазной линзы изменяется при помощи мерцательной мышцы (ciliary muscle). Когда мышца сжимается, хрусталик становится более круглым, при помощи чего сфокусированное изображение более близких предметов поступает на сетчатку. Диафрагма человеческого глаза настраивается также как в фотоаппарате. Зрачок управляет величиной раскрытия хрусталика, расширяясь или сжимаясь при помощи радиальных мышц, окрашивающих радужную оболочку глаза (iris) характерным для него цветом. Когда наш глаз перемещает взгляд в область, на которой он желает сфокусироваться, фокусное расстояние и размер зрачка мгновенно настраиваются под необходимые условия "автоматически".


Рисунок 2. Сетчатка глаза в разрезе
Рисунок 3. Глаз с желтым пятном

Структура сетчатки (рис. 2), фоточувствительного слоя внутри глаза, очень сложна. Оптический нерв (вместе с кровеносными сосудами) отходит от задней стенки глаза. В этом месте нет фоточувствительных клеток, и оно известно под названием «слепое пятно». Нервные волокна разветвляются и оканчиваются клетками трех разных типов, которые улавливают поступающий на них свет. Отростки, идущие из третьего, самого внутреннего слоя клеток, – содержат молекулы, которые временно меняют свою структуру при обработке поступившего света, и тем самым испускают электрический импульс. Фоточувствительные клетки называются палочками (rods) и колбочками (cones) по форме их отростков. Колбочки чувствительны к цвету, в то время как палочки – нет. С другой стороны фоточувствительность палочек гораздо выше, чем у колбочек. Один глаз содержит порядка ста миллионов палочек и шести миллионов колбочек, распределенных по сетчатке неравномерно. Точно напротив зрачка лежит так называемое желтое пятно (рис. 3), которое состоит только из колбочек в относительно плотной концентрации. Когда мы хотим увидеть что-то в фокусе, мы располагаем глаз так, чтобы изображение падало на желтое пятно. Между клетками сетчатки много взаимосвязей, и электрические импульсы от ста миллионов фоточувствительных клеток отправляются мозгу всего по миллиону нервным волокнам. Таким образом, глаз можно поверхностно описать как фото- или теле-камеру с загруженной фоточувствительной пленкой.


Рисунок 4. Фигура Kanizsa

От светового импульса к информации


Рисунок 5. Иллюстрация из книги Декарта "Le traité de l"homme", 1664

Но как мы видим на самом деле? До недавнего времени этот вопрос едва ли был разрешимым. Лучшим ответом на данный вопрос был следующий: в мозге есть область, которая специализируется на зрении, в которой формируется изображение, полученное с сетчатки глаза, в виде клеток мозга. Чем больше света падает на клетку сетчатки, тем с большей интенсивностью работает соответствующая ей клетка мозга, то есть активность клеток мозга в нашем зрительном центре зависит от распределения света, попадающего на сетчатку. Короче говоря, процесс начинается с изображения на сетчатке и заканчивается соответствующим изображением на маленьком «экране» из клеток мозга. Естественно, это не объясняет зрение, а просто смещает проблему на более глубокий уровень. Кому предназначено видеть это внутреннее изображение? Данную ситуацию хорошо иллюстрирует рисунок 5, взятый из работы Декарта "Le traité de l"homme". В данном случае, все нервные волокна заканчиваются в некой железе, которую Декарт представлял как место души, и именно она видит внутреннее изображение. Но вопрос остается: как "зрение" работает на самом деле?


Рисунок 6.

Идея мини-наблюдателя в мозге является не просто недостаточной для объяснения зрения, но она еще и игнорирует три виде деятельности, которые, очевидно, выполняются непосредственно самой зрительной системой. Например, посмотрим на фигуру на рисунке 4 (автор Kanizsa). Мы видим треугольник в трех круговых сегментах по их вырезам. Этот треугольник не был предъявлен на сетчатку, однако он является результатом домысливания нашей зрительной системы! Также, почти невозможно смотреть на рисунок 6 не видя непрерывных последовательностей круговых узоров борющихся за наше внимание, как будто мы непосредственно испытываем внутреннюю зрительную деятельность. Многие обнаруживают, что их зрительная система приходит в полное замешательство от фигуры Далленбаха (Dallenbach) (рисунок 8), так как они ищут способы интерпретировать эти черные и белые пятна в виде какой-то понятной им формы. Чтобы избавить вас от мучений, рисунок 10 предлагает интерпретацию, которую ваша зрительная система примет раз и навсегда. В противоположность предыдущему рисунку, вам не составит никакого труда реконструировать несколько штрихов туши на рисунке 7 в изображение двух беседующих людей.


Рисунок 7. Рисунок из "Mustard Seed Garden Manual of Painting", 1679-1701

Например, совершенно другой метод видения иллюстрируют исследования Вернера Рейхарта (Werner Reichardt) из г. Тюбинген, который в течение 14 лет изучал систему зрения и управления полетом комнатной мухи. За эти исследования он был удостоен премии Heineken Prize в 1985 году. Подобно многим другим насекомым муха имеет составные глаза, состоящие из многих сотен отдельных палочек, каждая их которых является отдельным фоточувствительным элементом. Система управления полетом мухи состоит из пяти независимых подсистем, работающих чрезвычайно быстро (скорость реакции примерно в 10 раз быстрее, чем у человека) и эффективно. Например, подсистема приземления работает следующим образом. Когда область обзора мухи "взрывается" (от того, что поверхность оказывается близко), муха направляется к центру "взрыва". Если центр находится над мухой, она автоматически переворачивается вверх ногами. Как только ноги мухи касаются поверхности, "подсистема" приземления отключается. При полете муха извлекает только два вида информации из своей области видимости: точку, в которой находится движущееся пятно определенного размера (которое должно совпадать с размером мухи на расстоянии 10 сантиметров), а также направление и скорость движения этого пятна по полю видимости. Обработка этих данных помогает автоматически корректировать траекторию полета. Весьма маловероятно, что муха владеет полной картиной окружающего мира. Она не видит ни поверхностей, ни объектов. Обработанные определенным образом входные зрительные данные передаются напрямую в двигательную подсистему. Таким образом, входные зрительные данные преобразуются не во внутреннее изображение, а в форму, которая позволяет мухе адекватно реагировать на ее окружение. То же самое можно сказать и о такой бесконечно более сложной системе, как человек.


Рисунок 8. Фигура Далленбаха

Есть много причин, почему ученые так долго воздерживались от решения фундаментального вопроса, как человек видит. Оказалось, что необходимо было сначала объяснить много других вопросов зрения – сложную структуру сетчатки, цветное видение, контрастность, остаточные изображения и т.д. Однако вопреки ожиданиям открытия в данных областях не способны пролить свет на решение основной проблемы. Еще более значительной проблемой было отсутствие какой либо общей концепции или схемы, в которой были бы перечислены все зрительные явления. Об относительной ограниченности обычных областей исследований можно почерпнуть в отличном руководстве T.N. Comsweet на тему зрительного восприятия, составленного на основе его лекций для студентов первого и второго семестров. В предисловии автор пишет: "Я стремлюсь описать фундаментальные аспекты, лежащие в основе огромного поля, которое мы небрежно называем зрительным восприятием". Однако, изучая содержание данной книги, этими "фундаментальными темами" оказываются поглощение света палочками и колбочками сетчатки, цветное зрение, способы, при помощи которых сенсорные клетки могут увеличивать или уменьшать пределы взаимного влияния друг на друга, частоту электрических сигналов, передаваемых через сенсорные клетки и т.д. Сегодня, исследования в данной области следуют совершенно новыми путями, что приводит к сбивающему с толку разнообразию в профессиональной прессе. И только специалист может сформировать общую картину развивающейся &quo;новой науки Зрения". Была всего одна попытка объединить несколько новых идей и результатов исследований в манере доступной для непрофессионала. И даже здесь вопросы "Что такое Зрение?" и "Как мы видим?" не стали главными вопросами обсуждения.

От изображения к обработке данных

Девид Марр (David Marr) из Лаборатории искусственного интеллекта при Массачусетском Технологическом Институте первым попытался приблизиться к предмету с совершенно другой стороны в своей книге "Зрение" (Vision), изданной уже после его смерти. В ней он стремился рассмотреть основную проблему и предложить возможные пути ее решения. Результаты Марра конечно не окончательны и по сей день открыты для исследований с разных направлений, но тем не менее основным достоинством его книги является ее логичность и последовательность выводов. Во всяком случае, подход Марра дает очень полезную основу, на котором можно строить исследования невозможных объектов и двойственных фигур. На следующих страницах мы попытаемся проследить ход мыслей Марра.

Марр описал недостатки традиционной теории зрительного восприятия так:

"Попытки понять зрительное восприятие, изучая лишь нейроны, подобно попытке понять полет птицы, изучая лишь ее перья. Это просто невозможно. Чтобы понять полет птицы нам необходимо понять аэродинамику, и только потом структура перьев и различные формы птичьих крыльев будут иметь для нас какое-то значение". В данном контексте Марр называет Дж. Дж. Гибсона (J. J. Gobson) первым, кто коснулся важных вопросов в данной области изучения зрения. По мнению Марра, самый важный вклад Гибсона состоял в том, что "самое важное в органах чувств то, что они являются информационными каналами из внешнего мира к нашему восприятию (...) Он поставил критически важный вопрос – Как каждый из нас получает одинаковые результаты при восприятии в повседневной жизни в постоянно изменяющихся условиях? Это очень важный вопрос, показывающий, что Гибсон правильно рассматривал проблему зрительного восприятия как восстановление из информации, полученной от сенсоров, "правильных" свойств объектов внешнего мира". И таким образом мы достигли области обработки информации.

Не должно возникать вопросов о том, что Марр хотел игнорировать другие объяснения феномена зрения. Напротив, он специально подчеркивает, что зрение не может быть удовлетворительно разъяснено только с одной точки зрения. Объяснения должны быть найдены для повседневных событий, согласующиеся с результатами экспериментальной психологии и всеми открытиями в данной области, сделанными психологами и неврологами в области анатомии нервной системы. Что касается обработки информации, то ученым компьютерных наук хотелось бы знать, как зрительная система может быть запрограммирована, какие алгоритмы наилучшим образом подходят для данной задачи. Короче, как зрение можно запрограммировать. Только всесторонняя теория может быть принята как удовлетворительное объяснение процесса видения.

Марр работал над данной проблемой с 1973 года по 1980 год. К сожалению, он не смог закончить свою работу, но он смог заложить прочный фундамент для дальнейших исследований.

От неврологии к зрительному механизму

Убеждение, что многие функции человека контролируются головным мозгом, разделяют неврологи с начала XIX века. Мнения разнились по вопросу, используются ли определенные части коры головного мозга для выполнения отдельных операций или для каждой операции задействуется весь мозг целиком. Сегодня знаменитый эксперимент французского невролога Пьера Поля Брока (Pierre Paul Broca) привел к всеобщему признанию теории специфического расположения. Брока лечил пациента, который не мог говорить 10 лет, хотя с голосовыми связками у него было все в порядке. Когда человек умер в 1861 году, вскрытие показало, что левая часть его мозга была деформирована. Брока сделал предположение, что речь контролируется этой частью коры головного мозга. Его теория была подтверждена последующими обследованиями пациентов с повреждениями головного мозга, что позволило, в конечном итоге, отметить центры жизненно важных функций человеческого мозга.


Рисунок 9. Отклик двух разных клеток мозга на оптические возбудители разных направлений

Столетием позже, в 1950-х годах, ученые Д.Х. Хьюбел (D.H. Hubel) и Т.Н. Визель (T.N. Wiesel) провели эксперименты в мозгом живых обезьян и кошек. В зрительном центре коры головного мозга они обнаружили нервные клетки, которые особенно чувствительны к горизонтальным, вертикальным и диагональным линиям в поле зрения (рис. 9). Их сложная техника микрохирургии была впоследствии принята к применению другими учеными.

Таким образом, кора головного мозга не просто содержит в себе центры для выполнения различных функции, но и внутри каждого центра, как, например, в зрительном центре, отдельные нервные клетки активируются только при поступлении очень специфических сигналов. Эти сигналы поступающие с сетчатки глаза, коррелируют с четко определенными ситуациями внешнего мира. Сегодня предполагается, что информация о различных формах и пространственном расположении объектов содержится в зрительной памяти, и информация от активированных нервных клеток сравнивается с этой хранимой информацией.

Эта теория детекторов повлияла на направление в исследованиях зрительного восприятия в середине 1960-х годов. Тем же самым путем последовали и ученые, связанные с "искусственным интеллектом". Компьютерная симуляция процесса человеческого зрения, также называемое "машинное зрение", рассматривалась как одна из наиболее легко достижимых целей в данных исследованиях. Но все сложилось несколько иначе. Скоро стало ясно, что фактически невозможно написать программы, которые были бы способны распознавать изменения интенсивности света, тени, структуру поверхности и беспорядочные наборы сложных объектов в значащие образы. Более того, такое распознавание образов потребовало неограниченных объемов памяти, так как изображения несчетного числа объектов необходимо хранить в памяти в бессчетном количестве вариаций расположения и ситуаций освещения.

Какие-либо дальнейшие продвижения в области распознавания образов в условиях реального мира не представлялись возможными. Вызывает сомнение надежда, что когда-либо компьютер сможет симулировать человеческий мозг. В сравнении с человеческим мозгом, в котором каждая нервная клетка имеет порядка 10 000 связей с другими нервными клетками, эквивалентное компьютерное соотношение 1:1 едва ли выглядит адекватным!


Рисунок 10. Разгадка фигуры Делленбаха

Лекция Элизабет Уоррингтон (Elizabeth Warrington)

В 1973 году Марр посетил лекцию британского невролога Элизабет Уоррингтон. Она отметила, что большое количество пациентов с париетальными повреждениями правой части мозга, которых она осмотрела, могли отлично распознавать и описывать множество объектов при условии, что эти объекты наблюдались ими в их обычном виде. Например, такие пациенты без особого труда идентифицировали ведро при виде сбоку, но не были способны распознать то же самое ведро при виде сверху. На самом деле, даже когда им говорили, что они смотрят на ведро сверху, они наотрез отказывались в это поверить! Еще более удивительным было поведение пациентов с повреждениями левой части мозга. Такие пациенты, как правило, не могут разговаривать, и, следовательно, вербально не могут назвать предмет, на который они смотрят, или описать его назначение. Тем не менее, они могут показать, что они правильно воспринимают геометрию предмета независимо от угла обзора. Это побудило Марра написать следующее: "Лекция Уоррингтон подтолкнула меня к следующим выводам. Во-первых, представление о форме объекта хранится в каком-то другом месте мозга, поэтому так сильно отличаются представления о форме предмета и его назначении. Во-вторых, зрение само может предоставить внутреннее описание формы наблюдаемого объекта, даже если этот объект не распознается обычным образом… Элизабет Уоррингтон указала на наиболее существенный факт человеческого зрения – оно говорит о форме, пространстве и взаимном расположении объектов." Если это действительно так, то ученые, работающие в области зрительного восприятия и искусственного интеллекта (в том числе и те, кто работают в области машинного зрения) должны будут поменять теорию детекторов из экспериментов Хьюбела на совершенно новый набор тактик.

Теория модулей


Рисунок 11. Стереограммы со случайными точками Белы Жулеса, парящий квадрат

Второй стартовой точкой в исследованиях Марра (после работы знакомства с работами Уоррингтон) является предположение, что наша зрительная система имеет модульную структуру. Выражаясь компьютерным языком, наша главная программа "Зрение" охватывает широкий круг подпрограмм, каждая из которых полностью независима от других, и может работать независимо от других подпрограмм. Ярким примером такой подпрограммы (или модуля) является стереоскопическое зрение, при помощи которого глубина воспринимается как результат обработки изображений, поступающих с обоих глаз, которые представляют собой немного отличающиеся друг от друга изображения. Прежде считалось, что чтобы видеть в трех измерениях, мы сначала распознаем изображения целиком, а потом решаем какие объекты находятся ближе, а какие дальше. В 1960 году Бела Жулес (Bela Julesz), который был удостоен премией Heineken в 1985 году, смог продемонстрировать, что пространственное восприятие двумя глазами происходит исключительно сравнением небольших различий между двумя изображениями, полученными с сетчаток обоих глаз. Таким образом, можно почувствовать глубину даже там, где нет и не предполагается никаких объектов. Для своих экспериментов Жулес придумал стереограммы, состоящие из случайно расположенных точек (см. рис. 11). Изображение, видимое правым глазом, идентично изображению видимому левым глазом во всем, кроме квадратной центральной области, которая обрезана и немного смещена к одному краю и снова совмещена с задним планом. Оставшийся белый промежуток затем был заполнен случайными точками. Если на два изображения (на которых не распознается никакого объекта) посмотреть сквозь стереоскоп, квадрат, который ранее был вырезан, будет выглядеть парящим над задним планом. Такие стереограммы содержат пространственные данные, которые автоматически обрабатываются нашей зрительной системой. Таким образом, стереоскопия является автономным модулем зрительной системы. Теория модулей показала себя достаточно эффективной.

От двухмерного изображения с сетчатки к трехмерной модели



Рисунок 12. В течение зрительного процесса изображение с сетчатки (слева) преобразуется в первичный эскиз, в котором изменения интенсивности становятся явными (справа)

Зрение – многошаговый процесс, который трансформирует двухмерные представления о внешнем мире (изображения с сетчатки) в полезную информацию для наблюдателя. Он начинается с двухмерного изображения, полученного с сетчатки глаза, которое, игнорируя пока цветное зрение, сохраняет только уровни интенсивности света. На первом шаге, при помощи только одиного модуля эти уровни интенсивности преобразуются в изменения интенсивности или, другими словами, в контуры, которые показывают резкие изменения интенсивности света. Марр точно установил, какой алгоритм задействуется в данном случае (описываемый математически, и, кстати, очень сложный), и как наше восприятие и нервные клетки исполняют этот алгоритм. Результат первого шага Марр назвал "первичным эскизом", который предлагает краткую информацию об изменениях интенсивности света, их взаимосвязях и распределении по зрительному полю (рис. 12). Это важный шаг, так как в видимом нами мире изменение интенсивности часто связано с естественными контурами объектов. Второй шаг подводит нас к тому, что Марр назвал "2,5-мерный эскиз". 2,5-мерный эскиз отражает ориентацию и глубину видимых поверхностей перед наблюдателем. Это изображение строится на основе данных не одного, а нескольких модулей. Марр придумал весьма широкое понятие "2,5-мерности", для того чтобы подчеркнуть, что мы работаем с пространственной информацией, которая видима с точки зрения наблюдателя. Для 2,5-мерный эскиза характерны искажения перспективы, и на данном этапе еще не может быть однозначно определено действительное пространственное расположение объектов. Изображение 2,5-мерного эскиза, представленного здесь (рис. 13), иллюстрирует несколько информационных участков при обработке такого наброска. Однако в нашем мозге изображения подобного вида не формируется.


Рисунок 13. Рисунок 2,5-мерного эскиза – "отцентрированное представление глубины и ориентации видимых поверхностей"

До сих пор зрительная система работала с использованием нескольких модулей автономно, автоматически и независимо от данных о внешнем мире, сохраненных в мозге. Однако в ходе заключительной стадии процесса есть возможность сослаться на уже имеющуюся информацию. Этот последний этап обработки предоставляет трехмерную модель – четкое описание, независимое от угла зрения наблюдателя и подходящее для непосредственного сравнения со зрительной информацией, хранимой в мозге.

Согласно Марру, главную роль в построении трехмерной модели играют компоненты направляющих осей форм объектов. Те, кто не знаком с этой идей, могут счесть ее неправдоподобной, но в действительности есть доказательства, подтверждающие данную гипотезу. Во-первых, множество объектов окружающего мира (в частности, животные и растения) могут быть вполне наглядно изображены в виде трубочных (или проволочных) моделей. Действительно, мы без труда можем распознать, что изображено на репродукции в виде компонентов направляющих осей (рис. 14).


Рисунок 14. Простые модели животных могут быть идентифицированы по их компонентам направляющих осей

Во-вторых, данная теория предлагает вероятное объяснение факта того, что мы способны визуально разобрать объект на составные части. Это отражено и в нашем языке, который дает различные имена каждой части объекта. Так, описывая тело человека, такие обозначения как "тело", "рука" и "палец" указывают на различные части тела согласно их компонентам осей (рис. 15).



Рисунок 16. Модель одной оси (слева) разбивается на отдельные компоненты осей (справа)

В-третьих, данная теория согласуется с нашей способностью обобщать и в то же время дифференцировать формы. Мы обобщаем, группируя вместе объекты с одними и теми же главными осями, и дифференцируем, анализируя дочерние оси подобно ветвям дерева. Марр предложил алгоритмы, при помощи которых 2,5-мерная модель преобразуется в трехмерную. Этот процесс также в основном является автономным. Марр отметил, что разработанные им алгоритмы работают только в случае использования чистых осей. Например, в случае применения его к мятому листу бумаги возможные оси будет очень сложно идентифицировать, и алгоритм будет неприменим.

Связь между трехмерной моделью и зрительными образами, хранимыми в мозге, активируется в процессе распознавания объекта.

Здесь есть большой пробел в наших знаниях. Как эти зрительные образы хранятся в мозге? Как протекает процесс распознавания? Как производится сравнение между известными изображениями и только что составленным трехмерным изображением? Это последний пункт, которого успел коснуться Марр (рис. 16), но необходимо получить огромное количество научных данных, чтобы внести определенность в данном вопросе.


Рисунок 16. Новые описания форм соотносятся с сохраненными формами сравнением, которое движется от обобщенной форме (сверху) к частной (внизу)

Хотя мы сами не осознаем различные фазы обработки зрительной информации, существует множество наглядных параллелей между фазами и различными способами, которыми мы в течение времени передавали впечатление о пространстве на двухмерной поверхности.

Так пуантилисты подчеркивают бесконтурное изображение сетчатки глаза, в то время как линейчатые изображения соответствуют стадии первичного наброска. Картины кубистов можно сопоставить с обработкой зрительных данных при подготовке к построению финальной трехмерной модели, хотя это, несомненно, и не было намерением художника.

Человек и компьютер

В своем комплексном подходе к предмету Марр стремился показать, что мы можем понять процесс зрения без необходимости привлечения знаний, которые уже доступны мозгу.

Таким образом, он открыл новую дорогу исследователям в области зрительного восприятия. Его идеи могут быть использованы для прокладки более эффективного пути к реализации зрительной машины. Когда Марр писал свою книгу, он, должно быть, знал о тех усилиях, которые его читателям предстоит приложить, чтобы следовать за его идеями и выводами. Это прослеживается по всей его работе и наиболее явно видно в заключительной главе "В защиту подхода". Это полемическое «обоснование» в размере 25 печатных страниц, на которых он использует благоприятный момент для обоснования своих целей. В данной главе он ведет беседу с воображаемым оппонентом, который нападает на Марра с аргументами, подобными следующим:

"Я все еще неудовлетворен описанием этого взаимосвязанного процесса и идеей того, что все оставшееся богатство деталей является лишь описанием. Это звучит как-то слишком примитивно... Поскольку мы продвигаемся все ближе к высказыванию, что мозг – это компьютер, должен сказать я все больше и больше опасаюсь за сохранение значения человеческих ценностей".

Марр предлагает интригующий ответ: "Утверждение, что мозг – это компьютер, корректно, но вводит в заблуждение. Мозг действительно узкоспециализированное устройство обработки информации, или скорее самое крупное из них. Рассмотрение нашего мозга как устройство обработки данных не принижает и не отрицает человеческие ценности. В любом случае, оно только поддерживает их и может, в конце концов, помочь нам понять, чем из такой информационной точки зрениями являются человеческие ценности, почему они имеют выборочное значение, и как они увязываются с социальными и общественными нормами, которыми обеспечили нас наши гены".

Рецептора

Афферентного проводящего пути

3) зоны коры, куда проецируется данный вид чувствительности -

И. Павлов назвал анализатором.

В современной научной литературе анализатор чаще называют сенсорной системой . В корковом конце анализатора происходят анализ и синтез полученной информации.

Зрительная сенсорная система

Орган зрения - глаз - состоит из глазного яблока и вспомогательного аппарата. Из глазного яблока выходит зрительный нерв, соединяющий его с головным мозгом.

Глазное яблоко имеет форму шара, более выпуклого спереди. Оно лежит в полости глазницы и состоит из внутреннего ядра и окружающих его трех оболочек: наружной, средней и внутренней (рис. 1).

Рис. 1. Горизонтальный разрез глазного яблока и механизм аккомодации (схема) [Косицкий Г. И., 1985] . В левой половине хрусталик (7) уплощен при рассматривании далекого предмета, а справа он стал более выпуклым за счет аккомодационного усилия при рассматривании близкого предмета 1 - склера; 2 - сосудистая оболочка; 3 - сетчатка; 4 - роговица; 5 - передняя камера; 6 - радужка; 7 - хрусталик; 8 - стекловидное тело; 9 - ресничная мышца, ресничные отростки и ресничная связка (циннова); 10 - центральная ямка; 11 - зрительный нерв

ГЛАЗНОЕ ЯБЛОКО


Наружная оболочка называется волокнистой, или фиброзной . Задний отдел ее представляет белочную оболочку, или склеру , которая защищает внутреннее ядро глаза и помогает сохранить его форму. Передний отдел представлен более выпуклой прозрачной роговицей , через которую в глаз проникает свет.

Средняя оболочка богата кровеносными сосудами и потому называется сосудистой. В ней выделяют три части:

переднюю – радужку

среднюю - ресничное тело

заднюю - собственно сосудистую оболочку .

Радужка имеет форму плоского кольца, цвет ее может быть голубой, зеленовато-серый или коричневый в зависимости от количества и характера пигмента. Отверстие в центре радужки - зрачок - способно суживаться и расширяться. Величину зрачка регулируют специальный глазные мышцы, расположенные в толще радужки: сфинктер (суживатель) зрачка и дилататор зрачка, расширяющий зрачок. Кзади от радужки находится ресничное тело - круговой валик, внутренний край которого имеет ресничные отростки . В нем заложена ресничная мышца, сокращение которой через специальную связку передается на хрусталик и он меняет свою кривизну. Собственно сосудистая оболочка - большая задняя часть средней оболочки глазного яблока, содержит черный пигментный слой, который поглощает свет.

Внутренняя оболочка глазного яблока называется сетчаткой, или сетчатой оболочкой. Это светочувствительная часть глаза, которая покрывает изнутри сосудистую оболочку. Она имеет сложное строение. В сетчатке находятся светочувствительные рецепторы - палочки и колбочки.


Внутреннее ядро глазного яблока составляют хрусталик, стекловидное тело и водянистая влага передней и задней камер глаза.

Хрусталик имеет форму двояковыпуклой линзы, он прозрачен и эластичен, расположен позади зрачка. Хрусталик преломляет входящие в глаз световые лучи и фокусирует их на сетчатке. В этом ему помогают роговица и внутриглазные жидкости. При помощи ресничной мышцы хрусталик меняет свою кривизну, принимая форму, необходимую то для "дальнего", то для "ближнего" видения.

Позади хрусталика находится стекловидное тело - прозрачная желеобразная масса.

Полость между роговицей и радужкой составляет переднюю камеру глаза, а между радужкой и хрусталиком - заднюю камеру. Они заполнены прозрачной жидкостью - водянистой влагой и сообщаются между собой через зрачок. Внутренние жидкости глаза находятся под давлением, которое определяют как внутриглазное давление. При повышении его могут возникнуть нарушения зрения. Повышение внутриглазного давления является признаком тяжелого заболевания глаз - глаукомы.

Вспомогательный аппарат глаза состоит из защитных приспособлений, слезного и двигательного аппарата.

К защитным образованиям относятся брови, ресницы и веки. Брови предохраняют глаз от пота, стекающего со лба. Ресницы, находящиеся на свободных краях верхнего и нижнего века, защищают глаза от пыли, снега, дождя. Основу века составляет соединительнотканная пластинка, напоминающая хрящ, снаружи она покрыта кожей, а изнутри - соединительной оболочкой - конъюнктивой . С век конъюнктива переходит на переднюю поверхность глазного яблока, за исключением роговицы. При сомкнутых веках образуется узкое пространство между конъюнктивой век и конъюнктивой глазного яблока - конъюнктивальный мешок.

Слезный аппарат представлен слезной железой и слезовыводящими путями . Слезная железа занимает ямку в верхнем углу латеральной стенки глазницы. Несколько ее протоков открывается в верхний свод конъюнктивального мешка. Слеза омывает глазное яблоко и постоянно увлажняет роговицу. Движению слезной жидкости в сторону медиального угла глаза способствуют мигательные движения век. Во внутреннем углу глаза слеза скапливается в виде слезного озера, на дне которого виден слезный сосочек. Отсюда через слезные точки (точечные отверстия на внутренних краях верхнего и нижнего век) слеза попадает сначала в слезные канальцы, а затем в слезный мешок. Последний переходит в носослезный проток, по которому слеза попадает в полость носа.

Двигательный аппарат глаза представлен шестью мышцами . Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Выделяют четыре прямые мышцы глазного яблока (верхняя, нижняя, латеральная и медиальная) и две косые мышцы (верхняя и нижняя). Мышцы действуют таким образом, что оба глаза движутся совместно и направлены в одну и ту же точку. От сухожильного кольца начинается также мышца, поднимающая верхнее веко. Мышцы глаза исчерченные и сокращаются произвольно.

Физиология зрения

Светочувствительные рецепторы глаза (фоторецепторы) - колбочки и палочки, располагаются в наружном слое сетчатки. Фоторецепторы контактируют с биполярными нейронами, а те в свою очередь - с ганглиозными. Образуется цепочка клеток, которые под действием света генерируют и проводят нервный импульс. Отростки ганглиозных нейронов образуют зрительный нерв.

По выходе из глаза зрительный нерв делится на две половины. Внутренняя перекрещивается и вместе с наружной половиной зрительного нерва противоположной стороны направляется к латеральному коленчатому телу, где расположен следующий нейрон, заканчивающийся на клетках зрительной зоны коры в затылочной доле полушария. Часть волокон зрительного тракта направляется к клеткам ядер верхних холмиков пластинки крыши среднего мозга. Эти ядра, так же как и ядра латеральных коленчатых тел, представляют собой первичные (рефлекторные) зрительные центры. От ядер верхних холмиков начинается тектоспинальный путь, за счет которого осуществляются рефлекторные ориентировочные движения, связанные со зрением. Ядра верхних холмиков также имеют связи с парасимпатическим ядром глазодвигательного нерва, расположенным под дном водопровода мозга. От него начинаются волокна, входящие в состав глазодвигательного нерва, которые иннервируют сфинктер зрачка, обеспечивающий сужение зрачка при ярком свете (зрачковый рефлекс), и ресничную мышцу, осуществляющую аккомодацию глаза.

Адекватным раздражителем для глаза является свет - электромагнитные волны длиной 400 - 750 нм. Более короткие - ультрафиолетовые и более длинные - инфракрасные лучи глазом человека не воспринимаются.

Преломляющий световые лучи аппарат глаза - роговица и хрусталик, фокусирует изображение предметов на сетчатке. Луч света проходит через слой ганглиозных и биполярных клеток и достигает колбочек и палочек. В фоторецепторах различают наружный сегмент, содержащий светочувствительный зрительный пигмент (родопсин в Галочках и йодопсин в колбочках), и внутренний сегмент, в котором находятся митохондрии. Наружные сегменты погружены в черный пигментный слой, выстилающий внутреннюю поверхность глаза. Он уменьшает отражение света внутри глаза и участвует в обмене веществ рецепторов.

В сетчатке насчитывают около 7 млн. колбочек и примерно 130 млн. палочек. Более чувствительны к свету палочки, их называют аппаратом сумеречного зрения. Колбочки, чувствительность к свету которых в 500 раз меньше,- это аппарат дневного и цветового видения. Цветоощущение, мир красок доступен рыбам, амфибиям, рептилиям и птицам. Доказывается это возможностью выработать у них условные рефлексы на различные цвета. Не воспринимают цвета собаки и копытные животные. Вопреки прочно установившемуся представлению, что быки очень не любят красный цвет, в опытах удалось доказать, что они не могут отличить зеленого, синего и даже черного от красного. Из млекопитающих только обезьяны и люди способны воспринимать цвета.

Колбочки и палочки распределены в сетчатке неравномерно. На дне глаза, напротив зрачка, находится так называемое пятно, в центре его есть углубление - центральная ямка - место наилучшего видения. Сюда фокусируется изображение при рассматривании предмета.

В центральной ямке имеются только колбочки. По направлению к периферии сетчатки количество колбочек уменьшается, а число палочек возрастает. Периферия сетчатки содержит только палочки.

Недалеко от пятна сетчатки, ближе к носу, расположено слепое пятно. Это место выхода зрительного нерва. В этом участке нет фоторецепторов, и оно не принимает участия в зрении.

Построение изображения на сетчатке.

Луч света достигает сетчатки, проходя через ряд преломляющих поверхностей и сред: роговицу, водянистую влагу передней камеры, хрусталик и стекловидное тело. Лучи, исходящие из одной точки внешнего пространства, должны быть сфокусированы в одну точку на сетчатке, только тогда возможно ясное видение.

Изображение на сетчатке получается действительное, перевернутое и уменьшенное. Несмотря на то что изображение перевернуто, мы воспринимаем предметы в прямом виде. Это происходит потому, что деятельность одних органов чувств проверяется другими. Для нас "низ" там, куда направлена сила земного притяжения.


Рис. 2. Построение изображения в глазу, а, б - предмет: а", б" - его перевернутое и уменьшенное изображение на сетчатке; С - узловая точка, через которую лучи идут без преломления, аα - угол зрения

Острота зрения.

Остротой зрения называется способность глаза видеть раздельно две точки. Нормальному глазу это доступно, если величина их изображения на сетчатке равна 4 мкм, а угол зрения составляет 1 мин. При меньшем угле зрения ясного видения не получается, точки сливаются.

Остроту зрения определяют по специальным таблицам, на которых изображены 12 рядов букв. С левой стороны каждой строки написано, с какого расстояния она должна быть видна человеку с нормальным зрением. Испытуемого помещают на определенном расстоянии от таблицы и находят строку, которую он прочитывает без ошибок.

Острота зрения увеличивается при яркой освещенности и очень низка при слабом свете.

Поле зрения . Все пространство, видимое глазу при неподвижно устремленном вперед взоре, называют полем зрения.

Различают центральное (в области желтого пятна) и периферическое зрение. Наибольшая острота зрения в области центральной ямки. Здесь только колбочки, диаметр их небольшой, они тесно примыкают друг к другу. Каждая колбочка связана с одним биполярным нейроном, а тот в свою очередь - с одним ганглиозным, от которого отходит отдельное нервное волокно, передающее импульсы в головной мозг.

Периферическое зрение отличается меньшей остротой. Это объясняется тем, что на периферии сетчатки колбочки окружены палочками и каждая уже не имеет отдельного пути к мозгу. Группа колбочек заканчивается на одной биполярной клетке, а множество таких клеток посылает свои импульсы к одной ганглиозной. В зрительном нерве примерно 1 млн. волокон, а рецепторов в глазу около 140 млн.

Периферия сетчатки плохо различает детали предмета, но хорошо воспринимает их движения. Боковое зрение имеет большое значение для восприятия внешнего мира. Для водителей различного вида транспорта нарушение его недопустимо.

Поле зрения определяют при помощи особого прибора - периметра (рис. 133), состоящего из полукруга, разделенного на градусы, и подставки для подбородка.


Рис. 3. Определение поля зрения при помощи периметра Форстнера

Испытуемый, закрыв один глаз, вторым фиксирует белую точку в центре дуги периметра впереди себя. Для определения границ поля зрения по дуге периметра, начиная от ее конца, медленно продвигают белую марку и определяют тот угол, под которым она видна неподвижным глазом.

Поле зрения наибольшее кнаружи, к виску - 90°, к носу и кверху и книзу - около 70°. Можно определить границы цветового зрения и при этом убедиться в удивительных фактах: периферические части сетчатки не воспринимают цвета; цветовые поля зрения не совпадают для различных цветов, самое узкое имеет зеленый цвет.

Аккомодация. Глаз часто сравнивают с фотокамерой. В нем имеется светочувствительный экран - сетчатка, на которой с помощью роговицы и хрусталика получается четкое изображение внешнего мира. Глаз способен к ясному видению равноудаленных предметов. Эта его способность носит название аккомодации.

Преломляющая сила роговицы остается постоянной; тонкая, точная фокусировка идет за счет изменения кривизны хрусталика. Эту функцию он выполняет пассивно. Дело в том, что хрусталик находится в капсуле, или сумке, которая через ресничную связку прикреплена к ресничной мышце. Когда мышца расслаблена, связка натянута, она тянет капсулу, которая сплющивает хрусталик. При напряжении аккомодации для рассматривания близких предметов, чтения, письма ресничная мышца сокращается, связка, натягивающая капсулу, расслабляется и хрусталик в силу своей эластичности становится более круглым, а его преломляющая сила увеличивается.

С возрастом эластичность хрусталика уменьшается, он отвердевает и утрачивает способность менять свою кривизну при сокращении ресничной мышцы. Это мешает четко видеть на близком расстоянии. Старческая дальнозоркость (пресбиопия) развивается после 40 лет. Исправляют ее с помощью очков - двояковыпуклых линз, которые надевают при чтении.

Аномалия зрения. Встречающаяся у молодых аномалия чаще всего является следствием неправильного развития глаза, а именно его неправильной длины. При удлинении глазного яблока возникает близорукость (миопия), изображение фокусируется впереди сетчатки. Отдаленные предметы видны неотчетливо. Для исправления близорукости пользуются двояковогнутыми линзами. При укорочении глазного яблока наблюдается дальнозоркость (гиперметропия). Изображение фокусируется позади сетчатки. Для исправления требуются двояковыпуклые линзы (рис. 134).


Рис. 4. Рефракция при нормальном зрении (а), при близорукости (б) и дальнозоркости (г). Оптическая коррекция близорукости (в) и дальнозоркости (д) (схема) [Косицкий Г. И., 1985]

Нарушение зрения, называемое астигматизмом, возникает в случае неправильной кривизны роговицы или хрусталика. При этом изображение в глазу искажается. Для исправления нужны цилиндрические стекла, подобрать которые не всегда легко.

Адаптация глаза.

При выходе из темного помещения на яркий свет мы вначале ослеплены и даже можем испытывать боль в глазах. Очень быстро эти явления проходят, глаза привыкают к яркому освещению.

Уменьшение чувствительности рецепторов глаза к свету называется адаптацией. При этом происходит выцветание зрительного пурпура. Заканчивается световая адаптация в первые 4 - 6 мин.

При переходе из светлого помещения в темное происходит темновая адаптация, продолжающаяся более 45 мин. Чувствительность палочек при этом возрастает в 200 000 - 400 000 раз. В общих чертах это явление можно наблюдать при входе в затемненный кинозал. Для изучения хода адаптации существуют специальные приборы - адаптомеры.

Глаз, глазное яблоко имеет почти шаровидную форму примерно 2,5 см в диаметре. Он состоит из нескольких оболочек, из них три – основные:

  • склера – внешняя оболочка,
  • сосудистая оболочка – средняя,
  • сетчатка – внутренняя.

Рис. 1. Схематическое представление механизма аккомодации слева - фокусировка вдаль; справа - фокусировка на близкие предметы.

Склера имеет белый цвет с молочным отливом, кроме передней ее части, которая прозрачна и называется роговицей. Через роговицу свет поступает в глаз. Сосудистая оболочка, средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок. Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой. За радужной оболочкой расположен хрусталик, похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов. Достигается это следующим образом (рис.1).

Зрачок представляет собой отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. У взрослого человека в спокойном состоянии диаметр зрачка при дневном свете равен 1,5 –2 мм, а в темноте увеличивается до7,5 мм. Основная физиологическая роль зрачка состоит в регулировании количества света, поступающего на сетчатку.

Сужение зрачка (миоз) происходит при увеличении освещённости (это ограничивает световой поток, попадающий на сетчатку, и, следовательно, служит защитным механизмом), при рассматривании близко расположенных предметов, когда происходит аккомодация и сведение зрительных осей (конвергенция), а также во .

Расширение зрачка (мидриаз) происходит при слабом освещении (что увеличивает освещённость сетчатки и тем самым повышает чувствительность глаза), а также при возбуждении , любых афферентных нервов, при эмоциональных реакциях напряжения, связанных с повышением тонуса симпатической , при психических возбуждениях, удушье, .

Величина зрачка регулируется кольцевыми и радиальными мышцами радужки. Радиальная мышца, расширяющая зрачок, иннервируется симпатическим нервом, идущим от верхнего шейного узла. Кольцевая мышца, суживающая зрачок, иннервируется парасимпатическими волокнами глазодвигательного нерва.

Рис 2. Схема строения зрительного анализатора

1 – сетчатка, 2 – неперекрещенные волокна зрительного нерва, 3 – перекрещенные волокна зрительного нерва, 4 – зрительный тракт, 5 – наружнее коленчатое тело, 6 – латеральный корешок, 7 – зрительные доли.
Наименьшее расстояние от предмета до глаза, на котором этот предмет ещё ясно видим, называется ближней точкой ясного видения, а наибольшее расстояние – дальней точкой ясного видения. При расположении предмета в ближней точке аккомодация максимальна, в дальней – аккомодация отсутствует. Разность преломляющих сил глаза при максимальной аккомодации и при её покое называют силой аккомодации. За единицу оптической силы принимается оптическая сила линзы с фокусным расстоянием 1 метр . Эта единица называется диоптрией. Для определения оптической силы линзы в диоптриях следует единицу разделить на фокусное расстояние в метрах. Величина аккомодации неодинакова у разных людей и колеблется в зависимости от возраста от 0 до 14 диоптрий.

Для ясного видения предмета необходимо, чтобы лучи каждой его точки были сфокусированы на сетчатке. Если смотреть вдаль, то близкие предметы видны неясно, расплывчато, так как лучи от ближних точек фокусируются за сетчаткой. Видеть одновременно одинаково ясно предметы, удалённые от глаза на разное расстояние, невозможно.

Рефракция (пре­ломление лучей) отражает способность оптической сис­темы глаза фокусировать изображение предмета на сет­чатке глаза. К особенностям преломляющих свойств любого глаза относится явление сферической аберрации . Оно заключается в том, что лучи, проходящие через перифери­ческие участки хрусталика, преломляются сильнее, чем лучи, иду­щие через центральные его части (рис. 65). Поэтому центральные и периферические лучи сходятся не в одной точке. Однако эта особенность преломления не мешает ясному видению предмета, так как радужная оболочка не пропускает лучи и тем самым устра­няются те из них, которые проходят через периферию хрусталика. Неодинаковое преломление лучей разной длины волны называют хроматической аберрацией .

Преломляюшая сила оптической системы (рефракция), т. е. способность глаза преломлять, и измеряется в условных единицах - диоптриях. Диоптрия - это преломляющая сила линзы, в которой параллельные лучи после преломления собирают ся в фокусе на расстоянии1 м.

Рис. 3. Ход лучей при различных видах клинической рефракции глаза a - эметропия (норма); b - миопия (близорукость); c - гиперметропия (дальнозоркость); d - астигматизм.

Окружающий нас мир мы видим ясно, когда все отделы “работают” гармонично и без помех. Для того, чтобы изображение было резким, сетчатка, очевидно, должна находиться в заднем фокусе оптической системы глаза. Различные нарушения преломления световых лучей в оптической системе глаза, приводящие к расфокусировке изображения на сетчатке, называются аномалиями рефракции (аметропиями). К ним относятся близорукость, дальнозоркость, возрастная дальнозоркость и астигматизм (рис. 3).

При нормальном зрении, которое называется эмметропическим, острота зрения, т.е. максимальная способность глаза различать отдельные детали объектов, обычно достигает одной условной единицы. Это означает, что че­ловек способен рассмотреть две отдельные точки, видимые под углом в 1 минуту.

При аномалии рефракции острота зрения всегда ниже 1. Различают три основных вида аномалии рефрак­ции - астигматизм, близорукость (миопию) и дальнозор­кость (гиперметропию).

При нарушениях рефракции возникают близорукость или дальнозоркость. Рефракция глаза изменяется с возрастом: она меньше нормальной у новорождённых, в пожилом возрасте может снова уменьшаться (так называемая старческая дальнозоркость или пресбиопия).

Схема коррекции близорукости

Астигматизм обусловлен тем, что в силу врожденных особенностей оптическая система глаза (роговица и хрус­талик) неодинаково преломляет лучи в разных направле­ниях (по горизонтальному или по вертикальному ме­ридиану). Иначе говоря, явление сферической аберрации у этих людей выражено значительно сильнее, чем обычно (и оно не компенсируется сужением зрачка). Так, если кривизна поверхности роговицы в вертикальном сечении больше, чем в горизонтальном, изображение на сетчатке не будет четким, независимо от расстояния до предмета.

Роговица будет иметь как бы два главных фокуса: один - для вертикального сечения, другой - для горизон­тального. Поэтому лучи света, проходящие через астиг­матический глаз, будут фокусироваться в разных плоско­стях: если горизонтальные линии предмета будут сфоку­сированы на сетчатке, то вертикальные - впереди нее. Ношение цилиндрических линз, подобранных с учетом реального дефекта оптической системы, в определенной степени компенсирует эту аномалию рефракции.

Близорукость и дально­зоркость обусловлены изменением длины глазного ябло­ка. При нормальной рефракции расстояние между рого­вицей и центральной ямкой (желтым пятном) составляет24,4 мм. При миопии (близорукости) продольная ось глаза больше24,4 мм, поэтому лучи от далекого объекта фокусируются не на сетчатке, а перед ней, в стекловид­ном теле. Чтобы ясно видеть вдаль, необходимо перед близорукими глазами поместить вогнутые стекла, кото­рые отодвинут сфокусированное изображение на сет­чатку. В дальнозорком глазу продольная ось глаза уко­рочена, т.е. меньше24,4 мм. Поэтому лучи от далекого объекта фокусируются не на сетчатке, а за ней. Этот недостаток рефракции может быть компенсирован акко­модационным усилием, т.е. увеличением выпуклости хру­сталика. Поэтому дальнозоркий человек напрягает акко­модационную мышцу, рассматривая не только близкие, но и далекие объекты. При рассматривании близких объектов аккомодационные усилия дальнозорких людей недостаточны. Поэтому для чтения дальнозоркие люди должны надевать очки с двояковыпуклыми линзами, уси­ливающими преломление света.

Аномалии рефракции, в частности близорукость и дальнозоркость распространены и среди животных, на­пример, у лошадей; близорукость весьма часто наблюда­ется у овец, особенно культурных пород.

Глаз - орган зрения животных и человека. Глаз человека состоит из глазного яблока, соединенного зрительным нервом с головным мозгом, и вспомогательного аппарата (веки, слезные органы и мышцы, двигающие глазное яблоко).

Глазное яблоко (рис. 94) защищено плотной оболочкой, называемой склерой. Передняя (прозрачная) часть склеры 1 называется роговицей. Роговица является самой чувствительной наружной частью человеческого тела (даже самое легкое ее касание вызывает мгновенное рефлекторное смыкание век).

За роговицей расположена радужная оболочка 2, которая у людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость. В радужной оболочке есть небольшое отверстие - зрачок 3. Диаметр зрачка может изменяться от 2 до 8 мм, уменьшаясь на свету и увеличиваясь в темноте.

За зрачком расположено прозрачное тело, напоминающее двояковыпуклую линзу, - хрусталик 4. Снаружи он мягкий и почти студенистый, внутри более твердый и упругий. Хрусталик окружен мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6, представляющее собой бесцветную студенистую массу. Задняя часть склеры - глазное дно - покрыто сетчатой оболочкой (сетчаткой) 7. Она состоит из тончайших волокон, устилающих глазное дно и представляющих собой разветвленные окончания зрительного нерва.

Как возникают и воспринимаются глазом изображения различных предметов?

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительные, уменьшенные и обратные изображения рассматриваемых предметов (рис. 95). Попав на окончания зрительного нерва, из которых состоит сетчатка, свет раздражает эти окончания. По нервным волокнам эти раздражения передаются в мозг, и у человека появляется зрительное ощущение: он видит предметы.

Изображение предмета, возникающее на сетчатке глаза, является перевернутым. Первым, кто это доказал, построив ход лучей в оптической системе глаза, был И. Кеплер. Чтобы проверить этот вывод, французский ученый Р. Декарт (1596-1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевернутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т. е. неперевернутыми? Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств. В свое время английский поэт Уильям Блейк (1757-1827) очень верно подметил:

Посредством глаза, а не глазом
Смотреть на мир умеет разум.

В 1896 г. американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказывались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У ученого появились симптомы морской болезни. В течение трех дней он ощущал тошноту. Однако на четвертые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать себя так же, как и до эксперимента. Мозг ученого освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, все опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобная приспосабливаемость характерна лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки надели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У нее стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается.

Однако и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения - наблюдаемый предмет нам кажется не таким, каков он есть на самом деле (рис. 96).

Есть еще одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется четкое изображение, когда мы переводим свой взгляд с удаленного предмета на более близкий?

Оказывается, те мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далекие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а следовательно, и оптическая сила увеличиваются.

Способность глаза приспосабливаться к видению как на близком, так и на более далеком расстоянии называется аккомодацией (от лат. accomodatio - приспособление). Благодаря аккомодации человеку удается фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика - на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием ясного (или наилучшего) зрения.

Какое преимущество дает зрение двумя глазами?

Во-первых, именно благодаря наличию двух глаз мы можем различать, какой из предметов находится ближе, какой дальше от нас. Дело в том, что на сетчатках правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предмет как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создает впечатление разницы в расстояниях. Эта же способность зрения позволяет видеть предмет объемным, а не плоским.

Во-вторых, благодаря наличию двух глаз увеличивается поле зрения. Поле зрения человека изображено на рисунке 97, а. Для сравнения рядом с ним показаны поля зрения лошади (рис. 97, в) и зайца (рис. 97, б). Глядя на эти рисунки, легко понять, почему хищникам так трудно подкрасться к этим животным, не выдав себя.

Зрение позволяет людям видеть друг друга. Возможно ли самому видеть, но для других быть невидимым? Впервые на этот вопрос попытался ответить в своем романе «Человек-невидимка» английский писатель Герберт Уэллс (1866-1946). Человек окажется невидимым после того, как его вещество станет прозрачным и обладающим той же оптической плотностью, что и окружающий воздух. Тогда отражения и преломления света на границе человеческого тела с воздухом не будет, и он превратится в невидимку. Так, например, толченое стекло, имеющее на воздухе вид белого порошка, тут же исчезает из виду, когда его помещают в воду - среду, обладающую примерно той же оптической плотностью, что и стекло.

В 1911 г. немецкий ученый Шпальтегольц пропитал препарат мертвой ткани животного специально приготовленной жидкостью, после чего поместил его в сосуд с такой же жидкостью Препарат стал невидимым.

Однако человек-невидимка должен быть невидимым на воздухе, а не в специально приготовленном растворе. А этого достигнуть не удается.

Но допустим, что человеку все-таки удастся стать прозрачным. Люди перестанут его видеть. А сможет ли он сам их видеть? Нет, ведь все его части, в том числе и глаза, перестанут преломлять световые лучи, и, следовательно, никакого изображения на сетчатке глаза возникать не будет. Кроме того, для формирования в сознании человека видимого образа световые лучи должны поглощаться сетчаткой, передавая ей свою энергию. Эта энергия необходима для возникновения сигналов, поступающих по зрительному нерву в мозг человека. Если же у человека-невидимки глаза станут совершенно прозрачными, то этого происходить не будет. А раз так, то он вообще перестанет видеть. Человек-невидимка будет слепым.

Герберт Уэллс не учел этого обстоятельства и потому наделил своего героя нормальным зрением, позволяющим ему, оставаясь незамеченным, терроризировать целый город.

1. Как устроен глаз человека? Какие его части образуют оптическую систему? 2. Охарактеризуйте изображение, возникающее на сетчатке глаза. 3. Как передается изображение предмета в мозг? Почему мы видим предметы прямыми, а не перевернутыми? 4. Почему, переводя взгляде близкого предмета на удаленный, мы продолжаем видеть его четкий образ? 5. Чему равно расстояние наилучшего зрения? 6. Какое преимущество дает зрение двумя глазами? 7. Почему человек-невидимка должен быть слепым?

Глаз – тело в виде шаровидной сферы. Он достигает диаметра 25 мм и веса 8 г, является зрительным анализатором. Фиксирует увиденное и передает изображение на , затем по нервным импульсам в мозг.

Прибор оптической зрительной системы – человеческий глаз умеет сам настраиваться, в зависимости от поступающего света. Он способен увидеть удаленные предметы и находящиеся близко.

Сетчатка имеет очень сложное строение

Глазное яблоко представляет собой три оболочки. Внешняя – непрозрачная соединительная ткань, которая поддерживает форму глаза. Вторая оболочка – сосудистая, содержит большую сеть сосудов, которая питает глазное яблоко.

По цвету она черная, поглощает свет, не давая ему рассеиваться. Третья оболочка – , цветная, от ее расцветки зависит цвет глаз. В центре имеется зрачок, который регулирует поток лучей и меняется в диаметре, зависит от интенсивности освещения.

Оптическая система глаза состоит из , стекловидного тела. Хрусталик может принимать размеры маленького шарика и растягиваться до больших размеров, меняя фокус расстояния. Он способен менять свою кривизну.

Глазное дно покрывает сетчатка, имеющая толщину до 0,2 мм. Она состоит из слоистой нервной системы. Сетчатка имеет большую зрительную часть – фоторецепторные клетки и слепую переднюю часть.

Зрительные рецепторы сетчатки – палочки и колбочки. Эта часть состоит из десяти слоев, и поддается рассмотрению только под микроскопом.

Как формируется изображение на сетчатке


Проекция изображения на сетчатку

Когда лучи света проходят хрусталик, перемещаясь через стекловидное тело, они попадают на сетчатку, находящуюся на плоскости глазного дна. Напротив зрачка на сетчатке есть желтое пятно – это центральная часть, изображение на нем самое четкое.

Остальная часть – это периферическая. Центральная часть позволяет четко рассматривать предметы до мельчайших деталей. С помощью периферического зрения человек способен видеть не очень четкую картинку, но ориентироваться в пространстве.

Восприятие картинки происходит с проекцией изображения на сетчатку глаза. Фоторецепторы возбуждаются. Эта информация посылается в мозг и обрабатывается в зрительных центрах. Сетчатка каждого глаза передает через нервные импульсы свою половину изображения.

Благодаря этому и зрительной памяти возникает общий зрительный образ. На сетчатке отображается картинка в уменьшенном виде, перевернутой. А перед глазами она видится прямая и в натуральных размерах.

Снижение зрения при повреждениях сетчатки

Повреждение сетчатки ведет к снижению зрения. Если повреждена центральная ее часть, то может привести к полной потере зрения. О нарушениях периферического зрения человек долгое время может не догадываться.

Повреждение выявляется при проверке именно периферического зрения. При поражении большого участка этой части сетчатки происходит:

  1. дефект зрения в виде выпадения отдельных фрагментов;
  2. снижение ориентации при плохой освещенности;
  3. изменение восприятия цветов.

Изображение предметов на сетчатке глаза, контроль изображения мозгом


Коррекция зрения с помощью лазера

Если световой поток фокусируется перед сетчаткой, а не в центре, то это дефект зрения называется близорукостью. Близорукий человек плохо видит вдаль и хорошо видит вблизи. Когда световые лучи фокусируются за сетчаткой, то это называется дальнозоркостью.

Человек, наоборот, плохо видит близко и хорошо различает предметы вдали. Спустя некоторое время, если глаз не видит изображения предмета, оно исчезает с сетчатки. Образ, запомнившийся зрительно, хранится в сознании человека, на протяжении 0,1 сек. Это свойство называется инерцией зрения.

Как изображение контролируется мозгом

Еще ученый Иоганн Кеплер понял, что проектируемое изображение перевернутое. А другой ученый – француз Рене Декарт провел опыт и подтвердил этот вывод. Он с бычьего глаза убрал задний непрозрачный слой.

Вставил глаз в отверстие в стекле и увидел на стенке глазного дна картинку за окном в перевернутом виде. Таким образом, утверждение, что все изображения, подающие на сетчатку глаза, имеют перевернутый вид, было доказано.

А то, что мы видим изображения неперевернутыми, является заслугой мозга. Именно мозг корректирует непрерывно зрительный процесс. Это тоже доказано научным и опытным путем. Психолог Дж. Стреттон в 1896 году решил поставить эксперимент.

Он использовал очки, благодаря которым, на сетчатке глаза все предметы имели прямой вид, а не перевернутый. Тогда, как сам Стреттон видел перед собой перевернутые картинки. У него началось несогласованность явлений: видение глазами и ощущение других чувств. Появились признаки морской болезни, его тошнило, чувствовался дискомфорт и дисбаланс в организме. Продолжалось это три дня.

На четвертый день ему стало лучше. На пятый – он чувствовал себя прекрасно, как и до начала эксперимента. То есть мозг приспособился к изменениям и привел все в норму через некоторое время.

Стоило ему снять очки, как все опять встало с ног на голову. Но в этом случае мозг быстрее справился с задачей, уже через полтора часа все восстановилось, и картинка стала нормальной. Такой же опыт проводили с обезьяной, но она не выдержала эксперимента, впала как бы в коматозное состояние.

Особенности зрения


Палочки и колбочки

Еще одна особенность зрения – аккомодация, это способность глаз приспосабливаться видеть как на близком расстоянии, так и на далеком. На хрусталике имеются мышцы, которые могут изменять кривизну поверхности.

При взгляде на предметы, расположенные на дальнем расстоянии, кривизна поверхности небольшая и мышцы расслаблены. При рассмотрении предметов на близком расстоянии, мышцы приводят хрусталик в сжатое состояние, кривизна увеличивается, следовательно, и оптическая сила тоже.

Но на очень близком расстоянии, напряжение мышц становится наивысшим, может деформироваться, глаза быстро утомляются. Поэтому предельное расстояние для чтения и выполнения письма составляет 25 см до предмета.

На сетчатках левого и правого глаза получаемые изображения отличаются друг от друга, потому, что каждый глаз в отдельности видит предмет со своей стороны. Чем ближе рассматриваемый предмет, тем различия ярче.

Глаза видят предметы объемно, а не в плоскости. Эта особенность называется стереоскопическим зрением. Если долго рассматривать какой-то рисунок или предмет, то переместив глаза на чистое пространство, можно увидеть очертание на мгновение этого предмета или рисунка.

Факты о зрение


Есть очень много интересных фактов о строении глаза

Интересные факты о зрении человека и животных:

  • Зеленые глаза имеют только 2% населения земного шара.
  • Разные глаза по цвету бывают у 1% всего населения.
  • Красные глаза бывают у альбиносов.
  • Угол обзора у человека от 160 до 210°.
  • У кошек глаза поворачиваются до 185°.
  • У лошади обзор глаз составляет 350°.
  • Гриф видит мелких грызунов с высоты 5 км.
  • Стрекоза имеет уникальный зрительный орган, который состоит из 30 тыс. отдельных глазков. Каждый глазок видит отдельный фрагмент, и мозг соединяет все в большую картинку. Такое зрение называется фасеточным. Стрекоза видит в секунду 300 изображений.
  • У страуса объем глаза больше, чем объем мозга.
  • Глаз крупного кита весит 1 кг.
  • Крокодилы, когда едят мясо плачут, освобождаясь от излишней соли.
  • Есть среди скорпионов виды, имеющие до 12 глаз, у некоторых пауков насчитывается 8 глаз.
  • Красный цвет не различают собаки, кошки.
  • Пчела тоже не видит красного цвета, но различает другие, хорошо чувствует ультрафиолетовое излучение.
  • Распространенное мнение, что коровы и быки реагируют на красный цвет – ошибочное. На корридах быки обращают внимание не на красный цвет, а на движение тряпки, так как они еще близорукие.

Глазной орган сложный по структуре и функциональности. Каждая составная его часть индивидуальна и неповторима, в том числе и сетчатка. От работы каждого отдела отдельно и вместе взятых, зависит правильное и четкое восприятие изображения, острота зрения и видение мира в цветах и красках.

Про близорукость и методах ее лечения — в видеосюжете: