Зрительная труба кеплера. Оптические приборы с телескопическим ходом лучей: труба кеплера и труба галилея

Не слишком удаленные предметы?

Допустим, что мы хотим хорошенько разглядеть какой-то относительно близко расположенный предмет. С помощью трубы Кеплера это вполне возможно. В этом случае изображение, даваемое объективом, получится немного дальше задней фокальной плоскости объектива. А окуляр следует расположить так, чтобы это изображение оказалось в передней фокальной плоскости окуляра (рис. 17.9) (если мы хотим вести наблюдения, не напрягая зрения).

Задача 17.1. Труба Кеплера установлена на бесконечность. После того как окуляр этой трубы отодвинули от объектива на расстояние Dl = 0,50 см, через трубу стали ясно видны предметы, расположенные на расстоянии d . Определить это расстояние, если фокусное расстояние объектива F 1 = 50,00 см.

того как объектив передвинули, это расстояние стало равно

f = F 1 + Dl = 50,00 см + 0,50 см = 50,50 см.

Запишем формулу линзы для объектива:

Ответ : d » 51 м.

СТОП! Решите самостоятельно: В4, С4.

Труба Галилея

Первая зрительная труба была сконструирована все-таки не Кеплером, а итальянским ученым, физиком, механиком и астрономом Галилео Галилеем (1564–1642) в 1609 г. В трубе Галилея в отличие от трубы Кеплера окуляр представляет собой не собирающую, а рассеивающую линзу, поэтому и ход лучей в ней более сложный (рис. 17.10).

Лучи, идущие от предмета АВ , проходят через объектив – собирающую линзу О 1 , после чего они образуют сходящиеся пучки лучей. Если предмет АВ – бесконечно удаленный, то его действительное изображение ab должно было бы получиться в фокальной плоскости объектива. Причем это изображение получилось бы уменьшенным и перевернутым. Но на пути сходящихся пучков стоит окуляр – рассеивающая линза О 2 , для которой изображение ab является мнимым источником. Окуляр превращает сходящийся пучок лучей в расходящийся и создает мнимое прямое изображение А ¢В ¢.

Рис. 17.10

Угол зрения b, под которым мы видим изображение А 1 В 1 , явно больше угла зрения a, под которым виден предмет АВ невооруженным глазом.

Читатель : Как-то уж очень мудрёно… А как тут подсчитать угловое увеличение трубы?

Рис. 17.11

Объектив дает действительное изображение А 1 В 1 в фокальной плоскости. Теперь вспомним про окуляр – рассеивающую линзу, для которой изображение А 1 В 1 является мнимым источником.

Построим изображение этого мнимого источника (рис. 17.12).

1. Проведем луч В 1 О через оптический центр линзы – этот луч не преломляется.

Рис. 17.12

2. Проведем из точки В 1 луч В 1 С , параллельный главной оптической оси. До пересечения с линзой (участок CD ) – это вполне реальный луч, а на участке 1 – это чисто «умственная» линия – до точки В 1 в реальности луч CD не доходит! Он преломляется так, что продолжение преломленного луча проходит через главный передний фокус рассеивающей линзы – точку F 2 .

Пересечение луча 1 с продолжением луча 2 образуют точку В 2 – мнимое изображение мнимого источника В 1 . Опуская из точки В 2 перпендикуляр на главную оптическую ось, получим точку А 2 .

Теперь заметим, что угол, под которым из окуляра видно изображение А 2 В 2 – это угол А 2 ОВ 2 = b. Из DА 1 ОВ 1 угол . Величину |d | можно найти из формулы линзы для окуляра: здесь мнимый источник дает мнимое изображение в рассеивающей линзе, поэтому формула линзы имеет вид:

.

Если мы хотим, чтобы наблюдение можно было вести без напряжения глаза, мнимое изображение А 2 В 2 надо «отправить» на бесконечность: | f | ® ¥. Тогда из окуляра будут выходить параллельные пучки лучей. А мнимый источник А 1 В 1 для этого должен оказаться в задней фокальной плоскости рассеивающей линзы. В самом деле, при | f | ® ¥

.

Этот «предельный» случай схематически изображен на рис. 17.13.

Из DА 1 О 1 В 1

h 1 = F 1 a, (1)

Из DА 1 О 2 В 1

h 1 = |F 1 |b, (2)

Приравняем правые части равенств (1) и (2), получим

.

Итак, мы получили угловое увеличение трубы Галилея

Как видим, формула очень похожа на соответствующую формулу (17.2) для трубы Кеплера.

Длина трубы Галилея, как видно из рис. 17.13, равна

l = F 1 – |F 2 |. (17.14)

Задача 17.2. Объективом театрального бинокля служит собирающая линза с фокусным расстоянием F 1 = 8,00 см, а окуляром – рассеивающая линза с фокусным рас­стоянием F 2 = –4,00 см. Чему равно расстояние между объективом и окуляром, если изображение рассматри­вается глазом с расстояния наилучшего зрения? На сколько нужно переместить окуляр для того, чтобы изо­бражение можно было рассматривать глазом, аккомо­дированным на бесконечность?

Это изображение играет по отношению к окуляру роль мнимого источника, находя­щегося на расстоянии а за плоскостью окуляра. Мнимое изображение S 2 , давае­мое окуляром, находится на расстоянии d 0 перед плоскостью окуляра,где d 0 расстояние наилучшего зрения нормального глаза.

Запишем формулу линзы для окуляра:

Расстояние между объективом и окуляром, как видно из рис. 17.14, равно

l = F 1 – a = 8,00 – 4,76 » 3,24 см.

В том случае, когда глаз аккомодирован на бесконечность, длина трубы по формуле (17.4) равна

l 1 = F 1 – |F 2 | = 8,00 – 4,00 » 4,00 см.

Следовательно, смещение окуляра составляет

Dl = l – l 1 = 4,76 – 4,00 » 0,76 см.

Ответ : l » 3,24 см; Dl » 0,76 см.

СТОП! Решите самостоятельно: В6, С5, С6.

Читатель : А может ли труба Галилея дать изображение на экране?

Рис. 17.15

Мы знаем, что рассеивающая линза может дать действительное изображение только в одном случае: если мнимый источник находится за линзой перед задним фокусом (рис. 17.15).

Задача 17.3. Объектив трубы Галилея дает в фокальной плоскости действительное изображение Солнца. При каком расстоянии между объективом и окуляром можно получить на экране изображение Солнца с диаметром, в три раза бóльшим, чем у действительного изображения, которое получилось бы без окуляра. Фокусное расстояние объектива F 1 = 100 см, окуляра – F 2 = –15 см.

Рассеивающая линза создает на экране действительное изображение этого мнимого источника – отрезок А 2 В 2 . На рисунке R 1 – радиус действительного изображения Солнца на экране, а R – радиус действительного изображения Солнца, созданного только объективом (при отсутствии окуляра).

Из подобия DА 1 ОВ 1 и DА 2 ОВ 2 получим:

.

Запишем формулу линзы для окуляра, при этом учтем, что d < 0 – источник мнимый, f > 0 – изображение действительное:

|d | = 10 см.

Тогда из рис. 17.16 находим искомое расстояние l между окуляром и объективом:

l = F 1 – |d | = 100 – 10 = 90 cм.

Ответ : l = 90 см.

СТОП! Решите самостоятельно: С7, С8.

Сменная оптика для фотоаппаратов с объективом типа Vario Sonnar

Вместо вступления предлагаю посмотреть результаты охоты на ледяных бабочек с помощью фотопушки, приведенной выше. Пушка представляет собой камеру Casio QV4000 с оптической насадкой типа трубы Кеплера, составленной из объектива Гелиос-44 в качестве окуляра и объектива Pentacon 2,8/135.

Обычно считается, что аппараты с жестко встроенным объективом имеют существенно меньшие возможности, чем аппараты со сменной оптикой. В целом, это, безусловно, так, однако классические системы со сменной оптикой далеко не так идеальны, как может показаться на первый взгляд. И при некоторой удаче бывает, что частичная замена оптики (оптические насадки) не менее эффективна, чем замена оптики целиком. Кстати, этот подход очень популярен у кинокамер. Более-менее безболезненно менять оптику, имеющую произвольное фокусное расстояние, можно только у дальномерных аппаратов с фокальным шторным затвором, но в этом случае мы имеем только весьма приближенное понятие о том, что же на самом деле видит аппарат. Эта проблема решается у зеркальных аппаратов, которые позволяют видеть на матовом стекле изображение, сформированное именно тем объективом, который сейчас вставлен в камеру. Здесь получается, казалось бы, идеальная ситуация, но только для длиннофокусных объективов. Как только мы начинаем использовать с зеркальными камерами широкоугольные объективы, как сразу оказывается, что каждый из этих объективов имеет дополнительные линзы, роль которых - обеспечить возможность поместить между объективом и пленкой зеркало. Фактически можно было бы сделать камеру, у которой элемент, отвечающий за возможность размещения зеркала, был бы несменным, а менялись только передние компоненты объектива. Близкий по идеологии подход используется в зеркальных визирах кинокамер. Так как между телескопической насадкой и основным объективом ход лучей параллельный, то между ними можно разместить светоделительную призму-куб или полупрозрачную пластину под углом 45 градусов. Один из двух основных типов объективов с переменным фокусным расстоянием - трансфокатор - также объединяет объектив с постоянным фокусным расстоянием и афокальную систему. Изменение фокусного расстояния в трансфокаторах осуществляется за счет изменения увеличения афокальной насадки, достигаемого путем перемещения ее компонентов.

К сожалению, универсальность редко приводит к хорошим результатам. А более-менее удачная коррекция аберраций достигается только подбором всех оптических элементов системы. Рекомендую всем прочитать перевод статьи « » by Erwin Puts. Я это все написал только для того, чтобы подчеркнуть, что в принципиальном плане объективы зеркальной камеры отнюдь не лучше, чем встроенные объективы с оптическими насадками. Проблема состоит в том, что конструктор оптических насадок может рассчитывать только на собственные элементы и не может вмешаться в конструкцию объектива. Поэтому удачная работа объектива с насадкой встречается существенно реже, чем хорошо работающий, целиком спроектированный одним конструктором объектив, пусть даже и с удлиненным задним рабочим отрезком. Комбинация готовых оптических элементов, которые в сумме дают приемлемые аберрации, встречается редко, но все же случается. Обычно афокальные насадки представляют собой зрительную трубу Галилея. Однако их можно построить и по оптической схеме трубы Кеплера.

Оптическая схема трубы Кеплера.

В этом случае мы будем иметь перевернутое изображение, ну да к этому фотографам не привыкать. У некоторых цифровых аппаратов есть возможность переворачивать изображение на экране. Хотелось бы иметь такую возможность у всех цифровых аппаратов, поскольку городить оптическую систему для поворота изображения в цифровых камерах представляется расточительным. Впрочем, простейшую систему из зеркала, прикрепленного под углом 45 градусов к экрану, можно соорудить за пару минут.

Итак, мне удалось подобрать комбинацию стандартных оптических элементов, которая может использоваться совместно с самым распространенным на сегодняшний день объективом цифровых камер с фокусным расстоянием 7-21 мм. Sony называет этот объектив Vario Sonnar, аналогичные по конструкции объективы установлены в камерах Canon (G1,G2), Сasio (QV3000 ,QV3500 ,QV4000), Epson PC 3000Z , Toshiba PDR-M70 , Sony (S70 ,S75,S85). Получившаяся у меня труба Кеплера показывает неплохие результаты и позволяет использовать в своей конструкции самые разные сменные объективы. Система предназначена для работы, когда штатный объектив установлен на максимальное фокусное расстояние 21 мм, и в качестве окуляра зрительной трубы к нему пристыковывается объектив Юпитер-3 или Гелиос-44, далее устанавливаются удлинительные меха и произвольный объектив с фокусным расстоянием большим 50 мм.

Оптические схемы объективов, использовавшихся в качестве окуляров телескопической системы.

Удача состояла в том, что если разместить объектив Юпитер-3 входным зрачком к объективу аппарата, а выходным - к мехам, то аберрации на краях кадра оказываются весьма умеренными. Если использовать связку объектив Pentacon 135 в качестве объектива и объектив Юпитер 3 в качестве окуляра, то на глаз, как бы мы не поворачивали окуляр, картинка фактически не меняется, мы имеем трубу с 2,5-кратным увеличением. Если же вместо глаза мы будем использовать объектив аппарата, то картина кардинально меняется, и использование объектива Юпитер-3, повернутого входным зрачком к объективу камеры, предпочтительнее.

Casio QV3000 + Юпитер-3 + Pentacon 135

Если использовать в качестве окуляра Юпитер-3, а в качестве объектива Гелиос-44, или составить систему из двух объективов Гелиос-44, то фокусное расстояние получившейся системы фактически не меняется, однако, используя растяжение меха, мы можем производить съемку почти с любого расстояния.

На фото снимок почтовой марки, сделанный системой, составленной из камеры Casio QV4000 и двух объективов Гелиос-44. Диафрагма объектива камеры 1:8. Размер изображения, попавшего в кадр, 31 мм. Приведены фрагменты, соответствующие центру и углу кадра. У самого края качество изображения резко ухудшается по разрешению и падает освещенность. При использовании подобной схемы есть смысл использовать часть изображения, занимающую примерно 3/4 площади кадра. Из 4 Мп делаем 3, а из 3 Мп делаем 2,3 - и все очень здорово

Если же использовать длиннофокусные объективы, то увеличение системы будет равно отношению фокусных расстояний окуляра и объектива, и учитывая, что фокусное расстояние Юпитера-3 - 50 мм, мы легко можем создать насадку с 3-кратным увеличением фокусного расстояния. Неудобством подобной системы является виньетирование углов кадра. Поскольку запас по полю совсем невелик, любое диафрагмирование объектива трубы приводит к тому, что мы видим изображение, вписанное в круг, расположенный в центре кадра. Причем в центре кадра это хорошо, но может оказаться, что и не в центре, это значит, что система не обладает достаточной механической жесткостью, и под собственной тяжестью объектив сместился от оптической оси. Виньетирование кадров становится малозаметным, если использовать объективы для среднеформатных камер и фотоувеличителей. Наилучшие результаты по этому параметру показала система из объектива Ортагоз f=135 мм от фотоаппарата .
Окуляр - Юпитер-3, объектив - Ортагоз f=135 мм,

Однако и в этом случае требования к соосности системы весьма и весьма строгие. Малейшее смещение системы приведет к виньетированию одного из углов. Для того, чтобы проверить, насколько хорошо отъюстирована ваша система, можно закрыть диафрагму объектива Ортагоз и посмотреть, насколько по центру расположен образовавшийся круг. Съемка всегда проводится при полностью открытой диафрагме объектива и окуляра, а диафрагмирование осуществляется диафрагмой встроенного объектива камеры. В большинстве случаев фокусировка производится изменением длины меха. Если объективы, используемые в телескопической системе, имеют собственные подвижки, то точная фокусировка достигается их вращением. И наконец, дополнительная фокусировка может осуществляться перемещением объектива фотоаппарата. Причем при хорошей освещенности работает даже система автофокусировки. Фокусное расстояние получившейся системы великовато для портретной съемки, однако для оценки качества фрагмент снимка лица вполне пригоден.

Оценить работу объектива без фокусировки на бесконечность невозможно, и, хотя погода явно не способствовала подобным снимкам, привожу и их.

Можно поставить объектив с меньшим, чем у окуляра, фокусным расстоянием, и вот что тогда получится. Впрочем, это скорее курьез, чем способ практического применения.

Несколько слов о конкретной реализации установки

Приведенные способы крепления оптических элементов к камере - не руководство к действию, а информация для размышления. При работе с камерой Casio QV4000 и QV3500 предлагается использовать родное переходное кольцо LU-35A с резьбой 58 мм и уже далее к ней крепить все остальные оптические элементы. При работе с Casio QV 3000 я использовал конструкцию крепления насадок с резьбой 46 мм, описанную в статье «Доработка камеры Casio QV-3000 ». Для крепления объектива Гелиос-44 на его хвостовую часть одевалась пустая оправа для светофильтров с резьбой 49 мм и прижималась гайкой с резьбой М42. Гайку я получил, отпилив часть от переходного удлинительного кольца. Далее использовалось переходное оборачивающее кольцо Jolos с резьбы М49 на М59. С другой стороны на объектив навинчивалось оборачивающее кольцо для макросъемки М49×0,75-М42×1, далее муфта М42, также сделанная из распиленного удлинительного кольца, а далее стандартные меха и объективы с резьбой М42. Переходных колец с резьбы М42 существует великое множество. Я использовал переходные кольца на байонет Б или В, или переходное кольцо на резьбу М39. Для крепления объектива Юпитер-3 в качестве окуляра в резьбу для светофильтра вкручивалось переходное повышающее кольцо с резьбы М40,5 на М49 мм, далее использовалось оборачивающее кольцо Jolos с М49 на М58, и далее эта система крепилась к аппарату. С другой стороны объектива была накручена муфта с резьбой М39, далее переходное кольцо с М39 на М42, и далее аналогично системе с объективом Гелиос-44.

Результаты тестирования получившихся оптических систем вынесены в отдельный файл . В нем содержатся фотографии тестируемых оптических ситем и снимки мир, расположенных в центре в углу кадра. Здесь же привожу только итоговую таблицу значений максимального разрешения в центре и в углу кадра для протестированных конструкций. Разрешение выражено в штрих /пиксель. Черная и белая линии - 2 штриха.

Заключение

Схема пригодна для работы на любых дистанциях, но особо впечатляют результаты при макросъемке, поскольку наличие в системе мехов позволяет легко осуществить фокусировку на близлежащие предметы. Хотя при некоторых комбинациях Юпитер-3 дает более высокое разрешение, однако большее, чем у Гелиоса-44, виньетирование делают его менее привлекательным в качестве постоянного окуляра для системы со сменными объективами.

Хотелось бы пожелать фирмам, выпускающим всевозможные кольца и аксессуары для фотокамер, изготавливать муфту с резьбой М42 и переходные кольца с резьбы М42 на резьбу светофильтра, причем резьба М42 внутренняя, а для светофильтра внешняя.

Полагаю, что если какой-нибудь оптический завод сделает специализированный окуляр телескопической системы для использования с цифровыми камерами и произвольными объективами, то такой продукт будет пользоваться определенным спросом. Естественно, что подобная оптическая конструкция должна быть укомплектована переходным кольцом для крепления к камере и резьбой или байонетом под существующие объективы,

Вот, собственно говоря, и все. Я показал, что у меня получилось, а вы уж сами оценивайте, устраивает вас такое качество или нет. И еще. Раз нашлась одна удачная комбинация, то, наверное, есть и другие. Ищите, возможно, вам повезет.

ОПТИЧЕСКИЕ ПРИБОРЫ С ТЕЛЕСКОПИЧЕСКИМ ХОДОМ ЛУЧЕЙ: ТРУБА КЕПЛЕРА И ТРУБА ГАЛИЛЕЯ

Целью данной работы является изучение устройства двух оптических приборов – трубы Кеплера и трубы Галилея и измерение их увеличений.

Труба Кеплера представляет собой простейшую телескопическую систему. Она состоит из двух положительных (собирающих) линз, установленных так, что попадающий на первую линзу параллельный пучок выходит из второй линзы также параллельным (рис.1).

Линза 1 называется объективом, линза 2 – окуляром. Задний фокус объектива совпадает с передним фокусом окуляра. Такой ход лучей называется телескопическим, а оптическая система будет афокальной.

На рис.2 представлен ход лучей из точки объекта, лежащей вне оси.

Отрезок АF ок является действительным перевернутым изображением бесконечно удаленного предмета. Таким образом, труба Кеплера дает перевернутое изображение. Окуляр можно установить так, чтобы он действовал как лупа, создавая мнимое увеличенное изображение объекта на расстоянии наилучшего зрения D (см. рис.3).

Для определения увеличения трубы Кеплера рассмотрим рис.4.

Пусть лучи от бесконечно удаленного объекта падают на объектив параллельным пучком под углом -u к оптической оси, а из окуляра выходят под углом u′. Увеличение равно отношению размера изображения к размеру объекта, а это отношение равно отношению тангенсов соответствующих углов зрения. Поэтому увеличение трубы Кеплера равно:

γ = - tgu′/ tgu (1)

Отрицательный знак увеличения означает, что труба Кеплера создает перевернутое изображение. Используя геометрические соотношения (подобие треугольников), очевидные из рис.4, можно вывести соотношение:

γ = - fоб′/fок′ = -d/d′ , (2)

где d – диаметр оправы объектива, d′ - диаметр действительного изображения оправы объектива, создаваемого окуляром.

Зрительная труба Галилея представлена схематично на рис.5.

Окуляром является отрицательная (рассеивающая) линза 2. Фокусы объектива 1 и окуляра 2 совпадают в одной точке, поэтому ход лучей здесь также телескопический. Расстояние между объективом и окуляром равно разности их фокусных расстояний. В отличие от трубы Кеплера, изображение оправы объектива, создаваемое окуляром, будет мнимым. Рассматривая ход лучей из точки объекта, лежащей вне оси (рис.6), заметим, что труба Галилея создает прямое (не перевернутое) изображение объекта.

Используя геометрические соотношения так же, как это было сделано выше для трубы Кеплера, можно рассчитать увеличение трубы Галилея. Если лучи от бесконечно удаленного объекта падают на объектив параллельным пучком под углом -u к оптической оси, а из окуляра выходят под углом u′, то увеличение равно:

γ = tgu′/ tgu (3)

Также можно показать, что

γ = fоб′/fок′, (4)

Положительный знак увеличения показывает, что изображение, наблюдаемое в трубу Галилея, прямое (не перевернутое).

ПОРЯДОК РАБОТЫ

Приборы и материалы: оптическая скамья с установленными в рейтерах следующими оптическими элементами: осветители (полупроводниковый лазер и лампа накаливания), бипризма, две положительные линзы, отрицательная линза, экран.

ЗАДАНИЕ 1. Измерение увеличения трубы Кеплера .

1. Установите на оптическую скамью полупроводниковый лазер и бипризму. Луч лазера должен попадать на ребро бипризмы. Тогда из бипризмы выйдут два луча, идущие параллельно. Труба Кеплера служит для наблюдения очень удаленных предметов, поэтому на её вход поступают параллельные пучки лучей. Аналогом такого параллельного пучка будут служить два луча, выходящие из бипризмы параллельно друг другу. Измерьте и запишите расстояние d между этими лучами.

2. Далее соберите трубу Кеплера, используя в качестве объектива положительную линзу с большим фокусом, а в качестве окуляра – положительную линзу с меньшим фокусом. Зарисуйте получившуюся оптическую схему. Из окуляра должны выйти два луча, параллельные друг другу. Измерьте и запишите расстояние d" между ними.

3. Рассчитайте увеличение трубы Кеплера как отношение расстояний d и d", учитывая знак увеличения. Вычислите погрешность измерений и запишите результат с погрешностью.

4. Можно измерить увеличение и другим способом. Для этого надо осветить объектив другим источником света – лампой накаливания и получить действительное изображение оправы объектива позади окуляра. Измерьте диаметр оправы объектива d и диаметр его изображения d". Вычислите увеличение и запишите его с учетом погрешности измерений.

5. Рассчитайте увеличение по формуле (2) как отношение фокусных расстояний объектива и окуляра. Сравните с увеличением, рассчитанным в п.3 и в п.4.

ЗАДАНИЕ 2. Измерение увеличения трубы Галилея .

1. Установите на оптическую скамью полупроводниковый лазер и бипризму. Из бипризмы должны выйти два параллельных луча. Измерьте и запишите расстояние d между ними.

2. Далее соберите трубу Галилея, используя в качестве объектива положительную линзу, а в качестве окуляра -- отрицательную. Зарисуйте получившуюся оптическую схему. Из окуляра должны выйти два луча, параллельные друг другу. Измерьте и запишите расстояние d" между ними.

3. Рассчитайте увеличение трубы Галилея как отношение расстояний d и d". Вычислите погрешность измерений и запишите результат с погрешностью.

4. Рассчитайте увеличение по формуле (4) как отношение фокусных расстояний объектива окуляра. Сравните с увеличением, рассчитанным в п.3.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое телескопический ход лучей?

2. Чем отличается труба Кеплера от трубы Галилея?

3. Какие оптические системы называются афокальными?

Курсовая работа

по дисциплине: Прикладная оптика

На тему: Расчет трубы Кеплера

Введение

Телескопические оптические системы

1 Аберрации оптических систем

2 Сферическая аберрация

3 Хроматическая аберрация

4 Коматическая аберрация (кома)

5 Астигматизм

6 Кривизна поля изображения

7 Дисторсия (искажение)

Габаритный расчет оптической системы

Заключение

Литература

Приложения

Введение

Телескопы - астрономические оптические приборы, предназначенные для наблюдения небесных тел. Телескопы используются с применением различных приемников излучения для визуальных, фотографических, спектральных, фотоэлектрических наблюдений небесных светил.

Визуальные телескопы имеют объектив и окуляр и представляют собой так называемую телескопическую оптическую систему: они преобразуют параллельный пучок лучей, входящих в объектив, в параллельный же пучок, выходящий из окуляра. В такой системе задний фокус объектива совпадает с передним фокусом окуляра. Основные ее оптические характеристики: видимое увеличение Г, угловое поле зрения 2W, диаметр выходного зрачка D", разрешающая способность и проницающая сила.

Видимое увеличение оптической системы - это отношение угла, под которым наблюдается изображение, даваемое оптической системой прибора, к угловому размеру объекта при наблюдении его непосредственно глазом. Видимое увеличение телескопической системы:

Г=f"об/f"ок=D/D",

где f"об и f"ок фокусные расстояния объектива и окуляра,

D - диаметр входного,

D" - выходного зрачка. Таким образом, увеличивая фокусное расстояние объектива или уменьшая фокусное расстояние окуляра, можно достичь больших увеличений. Однако чем больше увеличение телескопа, тем меньше его поле зрения и тем больше искажения изображений объектов из-за несовершенства оптики системы.

Выходной зрачок представляет собой наименьшее сечение светового пучка, выходящего из телескопа. При наблюдениях зрачок глаза совмещается с выходным зрачком системы; поэтому он не должен быть больше зрачка глаза наблюдателя. Иначе часть света, собранного объективом, не попадет в глаз и будет потеряна. Обычно диаметр входного зрачка (оправа объектива) гораздо больше зрачка глаза, и точечные источники света, в частности звезды, при наблюдении их через телескоп кажутся значительно более яркими. Их кажущаяся яркость пропорциональна квадрату диаметра входного зрачка телескопа. Слабые звезды, не видимые невооруженным глазом, могут быть хорошо видны в телескоп с большим диаметром входного зрачка. Количество звезд, видимых в телескоп, гораздо больше, чем наблюдаемое непосредственно глазом.

телескоп оптический аберрация астрономический

1. Телескопические оптические системы

1 Аберрации оптических систем

Аберрации оптических систем (лат. - отклонение) - искажения, погрешности изображения, вызванные несовершенством оптической системы. Аберрациям, в разной степени, подвержены любые объективы, даже самые дорогие. Считается, что чем больше диапазон фокусных расстояний объектива, тем выше уровень его аберраций.

Наиболее распространённые виды аберраций ниже.

2 Сферическая аберрация

Большинство объективов сконструировано с использованием линз со сферическими поверхностями. Такие линзы просты в изготовлении, но сферическая форма линз не идеальна для получения резкого изображения. Эффект сферической аберрации проявляется в смягчении контраста и размытии деталей, так называемое «мыло».

Как это происходит? Параллельно идущие лучи света, при прохождении через сферическую линзу преломляется, лучи проходящие через край линзы, сливаются в фокальной точке ближе к линзе, чем световые лучи, проходящие через центр линзы. Другими словами, края линзы имеют более короткое фокусное расстояние, чем центр. На изображении ниже наглядно видно как проходит пучок света через сферическую линзу и из-за чего появляются сферические аберрации.

Световые лучи, проходящие сквозь линзу вблизи оптической оси (ближе к центру), фокусируется в области В, дальше от линзы. Световые лучи, проходящие сквозь краевые зоны линзы, фокусируются в области А, ближе к линзе.

3 Хроматическая аберрация

Хроматические аберрации (ХА) - явление вызванное дисперсией света проходящего через объектив, т.е. разложением луча света на составляющие. Лучи с разной длиной волны (разного цвета) преломляются под разными углами, поэтому из белого пучка образуется радуга.


Хроматические аберрации приводят к снижению чёткости изображения и появлению цветной «бахромы», особенно на контрастных объектах.

Для борьбы с хроматическими аберрациями применяются специальные апохроматические линзы из низкодисперсного стекла, не разлагающего световые лучи на волны.

1.4 Коматическая аберрация (кома)

Кома или коматическая аберрация это явление, видимое на периферии изображения, которое создается объективом, скорректированным на сферическую аберрацию, и вызывает сведение световых лучей, поступающих на край объектива под каким-то углом, в форме кометы, а не в форме желаемой точки. Отсюда и ее название.

Форма кометы ориентирована радиально, причем ее хвост направлен либо к центру, либо от центра изображения. Вызываемая этим размытость по краям изображения называется коматической засветкой. Кома, которая может иметь место даже в объективах, точно воспроизводящих точку как точку на оптической оси, вызывается разницей преломления между световыми лучами из точки, расположенной вне оптической оси, и проходящими через края объектива, и главным световым лучом от той же точки, проходящим через центр объектива.

Кома увеличивается по мере увеличения угла главного луча и ведет к снижению контрастности по краям изображения. Определенной степени улучшения можно добиться диафрагмированием объектива. Кома также может привести к засвечиванию размытых участков изображения, создавая неприятный эффект.

Ликвидация как сферической аберрации, так и комы для объекта, расположенного на определенном съемочном расстоянии, называется апланатизмом, а объектив, скорректированный таким образом, называется апланатом.

5 Астигматизм

При объективе, скорректированным на сферическую и коматическую аберрацию, точка объекта на оптической оси будет точно воспроизведена как точка в изображении, но точка объекта, расположенная вне оптической оси, появится не как точка в изображении, а скорее как затемнение или как линия. Такой тип аберрации называется астигматизмом.


Можно наблюдать это явление по краям изображения, если слегка сместить фокус объектива в положение, в котором точка объекта резко изображена как линия, ориентированная в радиальном направлении от центра изображения, и опять сместить фокус в другое положение, в котором точка объекта резко изображена в виде линии, ориентированной в направлении концентрического круга. (Расстояние между этими двумя положениями фокуса называется астигматической разницей.)

Другими словами, лучи света в меридиональной плоскости и лучи света в сагиттальной плоскости находятся в различном положении, поэтому эти две группы лучей не соединяются в одной точке. Когда объектив установлен в оптимальное фокусное положение для меридиональной плоскости, световые лучи в сагиттальной плоскости сведены в линию в направлении концентрического круга (это положение называется меридиональным фокусом).

Аналогичным образом, когда объектив установлен в оптимальном фокусном положении для сагиттальной плоскости, световые лучи в меридиональной плоскости образуют линию, ориентированную в радиальном направлении (это положение называется сагиттальным фокусом).


При этом виде искажения предметы на изображении выглядят искривленными, местами размытыми, прямые линии выглядят изогнутыми, возможны затемнения. Если линза страдает астигматизмом, то её пускают на запчасти, так как это явление не излечимо.

6 Кривизна поля изображения

При этом виде аберраций плоскость изображения становится изогнутой, таким образом если центр изображения в фокусе, то края изображения не в фокусе и наоборот, если края в фокусе, то центр не в фокусе.

1.7 Дисторсия (искажение)

Этот вид аберрации проявляется в искажении прямых линий. Если прямые линии вогнутые дисторсию называют подушкообразной, если выпуклыми - бочкообразной. Объективы с переменным фокусным расстоянием обычно создают бочкообразную дисторсию на «широком угле» (минимальное значение «зума») и подушкообразную - в режиме «телефото» (максимальное значение «зума»).


2. Габаритный расчет оптической системы

Начальные данные:

Для определения фокусных расстояний объектива и окуляра решим следующую систему:

f’ ob + f’ ok = L;

f’ ob / f’ ok =|Г|;

f’ ob + f’ ok = 255;

f’ ob / f’ ok =12.

f’ ob +f’ ob /12=255;

f’ ob =235.3846 мм;

f’ ok =19.6154 мм;

Диаметр входного зрачка вычисляется по формуле D=D’Г

D вх =2.5*12=30 мм;

Линейное поле зрения окуляра найдем по формуле:

; y’ = 235.3846*1.5 o ; y’=6.163781 мм;

Угловое поле зрения окуляра находится по формуле:

Расчет призменной системы

D 1 -входная грань первой призмы;

D 1 =(D вх +2y’)/2;

D 1 =21.163781 мм;

Длина хода лучей первой призмы =*2=21.163781*2=42.327562;

D 2 -входная грань второй призмы (вывод формулы в прил. 3);

D 2 =D вх *((D вх -2y’)/L)*(f’ ob /2+);

D 2 =18.91 мм;

Длина хода лучей второй призмы =*2=18.91*2=37.82;

При расчёте оптической системы расстояние между призмами выбирают в пределах 0,5-2 мм;

Для расчета призменной системы, необходимо привести её к воздуху.

Приведём к воздуху длину хода лучей призм:

l 01 -приведённая к воздуху длина первой призмы

n=1.5688 (коэффициент преломления стекла БК10)

l 01 =l 1 /n=26.981 мм

l 02 = l 2 /n=24.108 мм

Определение величины перемещения окуляра для обеспечения фокусировки в пределах ±5 дптр

прежде необходимо вычеслить цену одной диоптрии f’ ok 2 /1000 = 0,384764 (цена одной дптр.)

Перемещение окуляра для обеспечения заданной фокусировки: мм

Проверка на необходимость нанесения на отражающие грани отражательного покрытия:

(допустимый угол отклонения отклонения от осевого луча, когда еще не нарушается условие полного внутреннего отражения)

(предельный угол падения лучей на входную грань призмы, при котором отсутствует необходимость нанесения отражательного покрытия) . Следовательно: отражательное покрытие не нужно.

Расчет окуляра:

Так как 2ω’ = 34.9 о то необходимый тип окуляра - симметричный.

f’ ok =19.6154 мм (рассчитанное фокусное расстояние);

К п = S ’ F /f’ ok = 0.75(переводной коэффициент)

S ’ F = К п * f’ ok

S ’ F =0.75* f’ ok (значение заднего фокального отрезка)

Удаление выходного зрачка определяется по формуле: S’ p = S’ F + z’ p

z’ p находится по формуле Ньютона: z’ p = -f’ ok 2 /z p где z p - расстояние от переднего фокуса окуляра до апертурной диафрагмы. В зрительных трубах с призменной обарачивающей системой обычно апертурной диафрагмой является оправа объектива. В первом приближении можно принять z p равным фокусному расстоянию объектива со знаком «минус», следовательно:

z p = -235.3846 мм

Удаление выходного зрачка равно:

S’ p = 14.71155+1.634618=16.346168 мм

Аберрационный расчет компонентов оптической системы.

Аберрационный расчет включает в себя расчет аберраций окуляра и призм для трех длин волн.

Аберрационный расчет окуляра:

Расчет аберраций окуляра проводится в обратном ходе лучей, с помощью пакета прикладных программ «РОСА».

δy’ ок =0,0243

Расчет аберраций призменной системы:

Аберрации отражательных призм вычисляют по формулам аберраций третьего порядка эквивалентной плоскопараллельной пластины. Для стекла БК10 (n=1.5688).

Продольная сферическая аберрация:

δS’ пр =(0.5*d*(n 2 -1)*sin 2 б)/n 3

б’=arctg(D/2*f’ ob)=3.64627 o

d=2D 1 +2D 2 =80.15 мм

dS’ пр =0.061337586

Хроматизм положения:

(S’ f - S’ c) пр =0.33054442

Меридиональная кома:

δy"=3d(n 2 -1)*sin 2 б’*tgω 1 /2n 3

δy" = -0.001606181

Вычисление аббераций объектива:

Продольная сферическая абберация δS’ сф:

δS’ сф =-(δS’ пр + δS’ ок)=-0.013231586

Хроматизм положения:

(S’ f - S’ c) об = δS’ хр =-((S’ f - S’ c) пр +(S’ f - S’ c) ок)=-0.42673442

Меридиональная кома:

δy’ к = δy’ ок - δy’ пр

δy’ к =0.00115+0.001606181=0.002756181

Определение конструктивных элементов объектива.

Аберрации тонкой оптической системы определяют тремя основными параметрами P,W,C. Приближенная формула проф. Г.Г.Слюсарева связывает основные параметры P и W:

P = P 0 +0.85(W-W 0)

Расчет двухлинзового склеенного объектива сводится к отысканию определенной комбинации стекол с заданными значениями P 0 и С.

Расчет двухлинзового объектива по методу проф. Г.Г. Слюсарева:

) По полученным из условий компенсации аберраций призменной системы и окуляра значениям аберраций объектива δS’ хр, δS’ сф, δy’ к. находятся аберрационные суммы:

S I хр = δS’ хр =-0.42673442

S I = 2*δS’ сф /(tgб’) 2

S I =6.516521291

S II =2* δy к ’/(tgб’) 2 *tgω

S II =172.7915624

) По суммам находятся параметры системы:

S I хр / f’ ob

S II / f’ ob

) Вычисляется P 0:

P 0 = P-0.85(W-W 0)

) По графику-номограмме линия пересекает 20-ую клетку. Проверим комбинации стекол К8Ф1 и КФ4ТФ12:

) Из таблицы находятся значения Р 0 ,φ к и Q 0 , соответствующие заданному значению для К8Ф1 (не подходит)

φ k = 2.1845528

для КФ4ТФ12 (подходит)

) После нахождения Р 0 ,φ к, и Q 0 вычисляется Q по формуле:


) После нахождения Q определяются значения a 2 и a 3 первого нулевого луча (а 1 =0, т.к. предмет находится в бесконечности, а 4 =1 - из условия нормировки):



) По значениям а i определяются радиусы кривизны тонких линз:

Радиуса Тонких линз:


) После вычисления радиусов тонкого объектива выбираются толщины линз из следующих конструктивных соображений. Толщина по оси положительной линзы d1 складывается из абсолютных величин стрелок L1, L2 и толщины по краю, которая должна быть не меньше 0.05D.

h=D вх /2

L=h 2 /(2*r 0)

L 1 =0.58818 2 =-1.326112

d 1 =L 1 -L 2 +0.05D

) По полученным толщинам, вычисляют высоты:

h 1 =f об =235.3846

h 2 =h 1 -a 2 *d 1

h 2 =233.9506

h 3 =h 2 -a 3 *d 2

) Радиусы кривизны объектива с конечными толщинами:

r 1 =r 011 =191.268

r 2 = r 02 *(h 1 /h 2)

r 2 =-84.317178

r 3 =r 03 *(h 3 /h 1)

Контроль результатов проводится расчетом на компьютере по программе «РОСА»:

равнение аберраций объектива

Полученные и расчитанные абберации близки по значениям.

равнение аберраций зрительной трубы

Компоновка заключается в определении расстояния до призменной системы от объектива и окуляра. Расстояние между объективом и окуляром определяется как (S’ F ’ ob + S’ F ’ ok + Δ). Это расстояние складывается из расстояния между объективом и первой призмой, равного половине фокусного расстояния объектива, длины хода луча в первой призме, расстояния между призмами, длины хода луча во второй призме, расстояния от последней поверхности второй призмы до фокальной плоскости и расстояния от этой плоскости до окуляра.

692+81.15+41.381+14.777=255

Заключение

Для астрономических объективов разрешающая способность определяется наименьшим угловым расстоянием между двумя звездами, которые в телескоп могут быть видны раздельно. Теоретически разрешающая способность визуального телескопа (в секундах дуги) для желто-зеленых лучей, к которым наиболее чувствителен глаз, может быть оценена выражением 120/D, где D - диаметр входного зрачка телескопа, выраженный в миллиметрах.

Проницающей силой телескопа называется предельная звездная величина светила, доступного наблюдению с помощью данного телескопа при хороших атмосферных условиях. Плохое качество изображения, вследствие дрожания, поглощения и рассеивания лучей земной атмосферой, снижает предельную звездную величину реально наблюдаемых звезд, уменьшая концентрацию световой энергии на сетчатке глаза, фотопластинке или другом приемнике излучения в телескопе. Количество света, собираемого входным зрачком телескопа, растет пропорционально его площади; при этом возрастает и проницающая сила телескопа. Для телескопа с диаметром объектива D миллиметров проницающая сила, выраженная в звездных величинах при визуальных наблюдениях, определяется по формуле:

mvis=2,0+5 lg D.

В зависимости от оптической системы телескопы разделяются на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые. Если линзовая телескопическая система имеет положительный (собирающий) объектив и отрицательный (рассеивающий) окуляр, то она называется системой Галилея. Телескопическая линзовая система Кеплера имеет положительный объектив и положительный окуляр.

Система Галилея дает прямое мнимое изображение, имеет малое поле зрения и небольшую светосилу (большой диаметр выходного зрачка). Простота конструкции, небольшая длина системы и возможность получения прямого изображения - основные ее преимущества. Но поле зрения этой системы относительно невелико, а отсутствие между объективом и окуляром действительного изображения объекта не позволяет применять визирную сетку. Поэтому система Галилея не может быть использована для измерений в фокальной плоскости. В настоящее время она применяется в основном в театральных биноклях, где не требуется большого увеличения и поля зрения.

Система Кеплера дает действительное и перевернутое изображение объекта. Однако при наблюдении небесных светил последнее обстоятельство не так важно, и поэтому система Кеплера наиболее распространена в телескопах. Длина трубы телескопа при этом равна сумме фокусных расстояний объектива и окуляра:

L=f"об+f"ок.

Система Кеплера может быть снабжена визирной сеткой в виде плоскопараллельной пластинки со шкалой и перекрестием нитей. Эта система широко используется в сочетании с системой призм, позволяющей получать прямое изображение объективов. Кеплеровские системы применяются в основном для визуальных телескопов.

Кроме глаза, являющегося приемником излучения в визуальных телескопах, изображения небесных объектов могут регистрироваться на фотоэмульсии (такие телескопы называются астрографами); фотоэлектронный умножитель и электронно-оптический преобразователь позволяют усилить во много раз слабый световой сигнал от звезд, удаленных на большие расстояния; изображения могут проецироваться на трубку телевизионного телескопа. Изображение объекта может быть направлено и в астроспектрограф или астрофотометр.

Для наведения трубы телескопа на нужный небесный объект служит монтировка (штатив) телескопа. Она обеспечивает возможность поворота трубы вокруг двух взаимно перпендикулярных осей. Основание монтировки несет ось, относительно которой может вращаться вторая ось с вращающейся вокруг нее трубой телескопа. В зависимости от ориентации осей в пространстве монтировки делятся на несколько типов.

В альтазимутальных (или горизонтальных) монтировках одна ось расположена вертикально (ось азимутов), а вторая (ось зенитных расстояний) - горизонтально. Основной недостаток альтазимутальной монтировки - необходимость поворота телескопа вокруг двух осей для слежения за небесным объектом, движущимся вследствие видимого суточного вращения небесной сферы. Альтазимутальными монтировками снабжают многие астрометрические инструменты: универсальные инструменты, пассажные и меридианные круги.

Почти все современные большие телескопы имеют экваториальную (или параллактическую) монтировку, в которой главная ось - полярная или часовая - направлена на полюс мира, а вторая - ось склонений - перпендикулярна ей и лежит в плоскости экватора. Преимущество параллактической монтировки в том, что для слежения за суточным движением звезды достаточно поворачивать телескоп только вокруг одной полярной оси.

Литература

1. Цифровая техника. /Под ред. Э.В. Евреинова. - М.: Радио и связь, 2010. - 464 с.

Каган Б.М. Оптика. - М.: Энернгоатомиздат, 2009. - 592 с.

Скворцов Г.И. Вычислительная техника. - МТУСИ М. 2007 - 40 с.

Приложение 1

Фокусное расстояние 19.615 мм

Относительное отверстие 1:8

Угол поля зрения

Перемещение окуляра на 1 дптр. 0,4 мм


Конструктивные элементы

19.615; =14.755;

Осевой пучок

Δ C Δ F S´ F -S´ C




Главный луч


Меридиональное сечение наклонного пучка

ω 1 =-1 0 30’

ω 1 =-1 0 10’30”


В п. 71 отмечалось, что зрительная труба Галилея состоит (рис. 178) из положительного объектива и отрицательного окуляра и поэтому дает прямое изображение наблюдаемых предметов. Промежуточное изображение, получающееся в совмещенных фокальных плоскостях, в отлнчне от изображения в трубе Кеплера, будет мнимым, поэтому визирная сетка отсутствует.

Рассмотрим формулу (350) применительно к трубе Галилея. Для тонкого окуляра можно считать, что тогда Эта формула легко преобразуется к следующему виду:

Как видим, удаление входного зрачка в трубе Галилея положительное, т. е. входной зрачок мнимый и находится он далеко справа за глазом наблюдателя.

Положение и размеры апертурной диафрагмы и выходного зрачка в трубе Галилея определяет зрачок глаза наблюдателя. Поле в трубе Галилея ограничивается не полевой диафрагмой (она формально отсутствует), а виньетирующей диафрагмой, роль которой выполняет оправа объектива. В качестве объектива чаще всего используют двухлннзовую конструкцию, которая допускает иметь относительное отверстие и угловое поле не более Однако для обеспечения таких угловых полей при значительном удалении входного зрачка объективы должны иметь большие диаметры. В качестве окуляра обычно применяют одиночную отрицательную линзу или двухлинзовый отрицательный компонент, которые обеспечивают угловое поле не более при условии компенсации полевых аберраций объективом.

Рис. 178. Расчетная схема зрительной трубы Галилея

Рис. 179. Зависимость углового поля от видимого увеличения в зрительных трубах Галилея

Таким образом, в трубе Галилея трудно получить большое увеличение (обычно оно не превышает чаще Зависимость угла от увеличения для труб Галилея показана на рис. 179.

Таким образом, отметим достоинства зрительной трубы Галилея: прямое изображение; простота конструкции; длина трубы короче на два фокусных расстояния окуляра по сравнению с длиной подобной трубы Кеплера.

Однако нельзя забывать и недостатки: небольшие поля и увеличение; отсутствие действительного изображения и, следовательно, невозможность визирования и измерений. Расчет зрительной трубы Галилея выполним по формулам, полученным для расчета трубы Кеплера.

1. Фокусные расстояния объектива и окуляра:

2. Диаметр входного зрачка