Изображение предметов на сетчатке является. Какое изображение на сетчатке глаза

Мы привыкли видеть мир таким, какой он есть, но на самом деле на сетчатку глаза любое изображение попадает перевёрнутым. Разберёмся, почему человеческий глаз видит всё в изменённом состоянии и какую роль в этом процессе играют другие анализаторы.

Как на самом деле работают глаза?

По сути, человеческий глаз - это уникальный фотоаппарат. Вместо диафрагмы есть радужка, которая сжимается и сужает зрачок либо растягивается и расширяет его, чтобы в глаз попало достаточное количество света. Дальше хрусталик действует как линза: световые лучи фокусируются и попадают на сетчатку. Но так как хрусталик по характеристикам напоминает двояковыпуклую линзу, проходящие через него лучи преломляются и переворачиваются. Поэтому на сетчатке появляется уменьшенное перевёрнутое изображение. Однако глаз только воспринимает изображение, а обрабатывает его уже мозг. Он переворачивает картинку обратно, причём отдельно для каждого глаза, потом объединяет их в одно объёмное изображение, корректирует цвет и выделяет отдельные объекты. Только после этого процесса появляется реальная картина окружающего мира.

Считается, что новорождённый видит мир перевёрнутым до 3-й недели жизни. Постепенно мозг ребёнка учится воспринимать мир таким, какой он есть. При этом в процессе подобной тренировки важны не только зрительные функции, но и работа мышц, органов равновесия. В результате складывается истинная картина образов, явлений, предметов. Поэтому привычная для нас способность отражать действительность именно так, а не иначе, считается приобретённой.

А может ли человек научиться видеть мир вверх ногами?

Учёные решили проверить, сможет ли человек жить в перевёрнутом мире. В эксперименте участвовало два добровольца, которым надели очки, переворачивающие изображение. Один неподвижно сидел в кресле, не шевеля ни руками, ни ногами, а второй свободно двигался и оказывал помощь первому. По результатам исследования, человек, который проявлял активность, смог привыкнуть к новой реальности, а второй - нет. Подобная способность есть лишь у человека - такой же эксперимент с обезьяной привёл животное в полубессознательное состояние, и только через неделю она начала понемногу реагировать на сильные раздражители, оставаясь неподвижной.

С древних времен глаз был символом всеведения, тайного знания, мудрости и бдительности. И это неудивительно. Ведь именно благодаря зрению мы получаем большую часть информации об окружающем мире. С помощью глаз мы оцениваем размеры, форму, удаленность и взаиморасположение предметов, наслаждаемся многообразием красок и наблюдаем движение.

Как устроено любознательное око?

Человеческий глаз нередко сравнивают с фотоаппаратом. Роговица, прозрачная и выпуклая часть наружной оболочки, подобна линзе объектива. Вторая оболочка — сосудистая — спереди представлена радужкой, содержание пигмента в которой определяет цвет глаз. Отверстие в центре радужки — зрачок — суживаясь при ярком и расширяясь при тусклом освещении, регулирует количество света, поступающего внутрь глаза, подобно диафрагме. Вторая линза — подвижный и гибкий хрусталик окружен ресничной мышцей, которая изменяет степень его кривизны. Позади хрусталика расположено стекловидное тело — прозрачное студенистое вещество, которое поддерживает упругость и шаровидную форму глазного яблока. Лучи света, проходя сквозь внутриглазные структуры, падают на сетчатку — тончайшую оболочку из нервной ткани, выстилающую глаз изнутри. Фоторецепторы — светочувствительные клетки сетчатки, подобно фотопленке фиксируют изображение.

Почему говорят, что мы «видим» мозгом?

И все же орган зрения устроен гораздо сложнее самой современной фототехники. Ведь мы не просто фиксируем увиденное, а оцениваем ситуацию и реагируем словами, действиями и эмоциями.

Правый и левый глаз видят предметы под разным углом. Головной мозг соединяет оба изображения воедино, в результате чего мы можем оценить объем предметов и их взаиморасположение.

Таким образом, картина зрительного восприятия формируется в головном мозге.

Почему, стараясь рассмотреть что-либо, мы обращаем взгляд в эту сторону?

Наиболее четкое изображение формируется при попадании световых лучей в центральную зону сетчатки - макулу. Поэтому, стараясь рассмотреть что-либо повнимательнее, мы обращаем взгляд в соответствующую сторону. Свободное движение каждого глаза во всех направлениях обеспечивается работой шести мышц.

Веки, ресницы и брови — не только красивое обрамление?

Глазное яблоко защищено от внешних воздействий костными стенками орбиты, мягкой жировой клетчаткой, выстилающей ее полость, и веками.

Мы прищуриваемся, стараясь уберечь глаза от слепящего света, иссушающего ветра и пыли. Густые ресницы при этом смыкаются, образуя защитный барьер. А брови предназначены задерживать капельки пота, стекающие со лба.

Конъюнктива — тонкая слизистая оболочка, покрывающая глазное яблоко и внутреннюю поверхность век, содержит сотни мельчайших желёзок. Они вырабатывают «смазку», которая обеспечивает свободное движение век при смыкании и защищает роговицу от высыхания.

Аккомодация глаза

Как формируется изображение на сетчатке?

Для того чтобы понять, как формируется изображение на сетчатке, необходимо вспомнить, что при прохождении из одной прозрачной среды в другую световые лучи преломляются (т.е. отклоняются от прямолинейного распространения).

Прозрачными средами в глазу являются роговица с покрывающей ее слезной пленкой, водянистая влага, хрусталик и стекловидное тело. Наибольшей преломляющей силой обладает роговица, вторая по силе линза - хрусталик. Слезная пленка, водянистая влага и стекловидное тело обладают пренебрежимо малой преломляющей способностью.

Проходя сквозь внутриглазные среды, световые лучи преломляются и сходятся на сетчатке, формируя четкое изображение.

Что такое аккомодация?

Любая попытка перевести взгляд приводит к дефокусированию изображения и требует дополнительной настройки оптической системы глаза. Она осуществляется за счет аккомодации - изменения преломляющей силы хрусталика.

Подвижный и гибкий хрусталик прикреплен с помощью волокон цинновой связки к цилиарной мышце. При зрении вдаль мышца расслаблена, волокна цинновой связки находятся в натянутом состоянии, не позволяя хрусталику принять выпуклую форму. При попытке рассмотреть предметы вблизи цилиарная мышца сокращается, мышечный круг суживается, циннова связка расслабляется и хрусталик приобретает выпуклую форму. Тем самым увеличивается его преломляющая способность, и на сетчатке фокусируются предметы, расположенные на близком расстоянии. Этот процесс называется аккомодацией.

Почему нам кажется, что «с возрастом руки становятся короче»?

С возрастом хрусталик теряет свои эластические свойства, становится плотным и с трудом изменяет свою преломляющую способность. В результате мы постепенно утрачиваем способность к аккомодации, что затрудняет работу на близком расстоянии. При чтении мы стараемся отодвинуть газету или книгу дальше от глаз, но скоро длина рук оказывается недостаточной для обеспечения четкого зрения.

Для коррекции пресбиопии применяют собирающие линзы, сила которых увеличивается с возрастом.

Нарушения зрения

У 38% жителей нашей страны выявляются нарушения зрения, требующие очковой коррекции.

В норме оптическая система глаза способна преломлять световые лучи таким образом, чтобы они сходились точно на сетчатке, обеспечивая четкое зрение. Для того чтобы сфокусировать изображение на сетчатке, глазу с нарушением рефракции требуется дополнительная линза.

Какие бывают нарушения зрения?

Преломляющая сила глаза определяется двумя основными анатомическими факторами: длиной переднезадней оси глаза и кривизной роговицы.

Близорукость или миопия. Если длина оси глаза увеличена или роговица имеет большую преломляющую силу, изображение формируется перед сетчаткой. Такое нарушение зрения называется близорукостью или миопией. Близорукие хорошо видят на близком расстоянии и плохо вдаль. Коррекция достигается ношением очков с рассеивающими (минусовыми) линзами.

Дальнозоркость или гиперметропия. Если длина оси глаза уменьшена или преломляющая сила роговицы невелика, изображение формируется в мнимой точке позади сетчатки. Такое нарушение зрения называется дальнозоркостью или гиперметропией. Существует ошибочное мнение, что дальнозоркие хорошо видят вдаль. Они испытывают трудности при работе на близком расстоянии и нередко плохо видят вдаль. Коррекция достигается ношением очков с собирающими (плюсовыми) линзами.

Астигматизм. При нарушении сферичности роговицы существует разница в преломляющей силе по двум главным меридианам. Изображение предметов на сетчатке искаженное: одни линии четкие, другие размытые. Такое нарушение зрения называется астигматизмом и требует ношения очков с цилиндрическими линзами.

Невозможные фигуры и двойственные изображения не являются чем-то, что не может быть воспринято буквально: они возникают у нас в мозге. Так как процесс восприятия таких фигур следует странным нестандартным путем, наблюдатель приходит к пониманию, что что-то необычное происходит в его голове. Для лучшего понимая процесса, который мы называем "зрением", полезно иметь представление о том, как наши органы чувств (глаза и мозг) преобразуют световые раздражители в полезную информацию.

Глаз как оптическое устройство

Рисунок 1. Анатомия глазного яблока.

Глаз (см. рис. 1) работает подобно фотокамере. Хрусталик (lens) проецирует перевернутое уменьшенное изображение из внешнего мира на сетчатку (retina) – сеть фоточувствительных клеток, расположенных напротив зрачка (pupil) и занимающих более половины площади внутренней поверхности глазного яблока. Как оптический инструмент, глаз долгое время являлся маленькой загадка. В то время как камера фокусируется движением хрусталика ближе или дальше от светочувствительного слоя, его способность к преломлению света настраивается во время аккомодации (адаптации глаза на определенное расстояние). Форма глазной линзы изменяется при помощи мерцательной мышцы (ciliary muscle). Когда мышца сжимается, хрусталик становится более круглым, при помощи чего сфокусированное изображение более близких предметов поступает на сетчатку. Диафрагма человеческого глаза настраивается также как в фотоаппарате. Зрачок управляет величиной раскрытия хрусталика, расширяясь или сжимаясь при помощи радиальных мышц, окрашивающих радужную оболочку глаза (iris) характерным для него цветом. Когда наш глаз перемещает взгляд в область, на которой он желает сфокусироваться, фокусное расстояние и размер зрачка мгновенно настраиваются под необходимые условия "автоматически".


Рисунок 2. Сетчатка глаза в разрезе
Рисунок 3. Глаз с желтым пятном

Структура сетчатки (рис. 2), фоточувствительного слоя внутри глаза, очень сложна. Оптический нерв (вместе с кровеносными сосудами) отходит от задней стенки глаза. В этом месте нет фоточувствительных клеток, и оно известно под названием «слепое пятно». Нервные волокна разветвляются и оканчиваются клетками трех разных типов, которые улавливают поступающий на них свет. Отростки, идущие из третьего, самого внутреннего слоя клеток, – содержат молекулы, которые временно меняют свою структуру при обработке поступившего света, и тем самым испускают электрический импульс. Фоточувствительные клетки называются палочками (rods) и колбочками (cones) по форме их отростков. Колбочки чувствительны к цвету, в то время как палочки – нет. С другой стороны фоточувствительность палочек гораздо выше, чем у колбочек. Один глаз содержит порядка ста миллионов палочек и шести миллионов колбочек, распределенных по сетчатке неравномерно. Точно напротив зрачка лежит так называемое желтое пятно (рис. 3), которое состоит только из колбочек в относительно плотной концентрации. Когда мы хотим увидеть что-то в фокусе, мы располагаем глаз так, чтобы изображение падало на желтое пятно. Между клетками сетчатки много взаимосвязей, и электрические импульсы от ста миллионов фоточувствительных клеток отправляются мозгу всего по миллиону нервным волокнам. Таким образом, глаз можно поверхностно описать как фото- или теле-камеру с загруженной фоточувствительной пленкой.


Рисунок 4. Фигура Kanizsa

От светового импульса к информации


Рисунок 5. Иллюстрация из книги Декарта "Le traité de l"homme", 1664

Но как мы видим на самом деле? До недавнего времени этот вопрос едва ли был разрешимым. Лучшим ответом на данный вопрос был следующий: в мозге есть область, которая специализируется на зрении, в которой формируется изображение, полученное с сетчатки глаза, в виде клеток мозга. Чем больше света падает на клетку сетчатки, тем с большей интенсивностью работает соответствующая ей клетка мозга, то есть активность клеток мозга в нашем зрительном центре зависит от распределения света, попадающего на сетчатку. Короче говоря, процесс начинается с изображения на сетчатке и заканчивается соответствующим изображением на маленьком «экране» из клеток мозга. Естественно, это не объясняет зрение, а просто смещает проблему на более глубокий уровень. Кому предназначено видеть это внутреннее изображение? Данную ситуацию хорошо иллюстрирует рисунок 5, взятый из работы Декарта "Le traité de l"homme". В данном случае, все нервные волокна заканчиваются в некой железе, которую Декарт представлял как место души, и именно она видит внутреннее изображение. Но вопрос остается: как "зрение" работает на самом деле?


Рисунок 6.

Идея мини-наблюдателя в мозге является не просто недостаточной для объяснения зрения, но она еще и игнорирует три виде деятельности, которые, очевидно, выполняются непосредственно самой зрительной системой. Например, посмотрим на фигуру на рисунке 4 (автор Kanizsa). Мы видим треугольник в трех круговых сегментах по их вырезам. Этот треугольник не был предъявлен на сетчатку, однако он является результатом домысливания нашей зрительной системы! Также, почти невозможно смотреть на рисунок 6 не видя непрерывных последовательностей круговых узоров борющихся за наше внимание, как будто мы непосредственно испытываем внутреннюю зрительную деятельность. Многие обнаруживают, что их зрительная система приходит в полное замешательство от фигуры Далленбаха (Dallenbach) (рисунок 8), так как они ищут способы интерпретировать эти черные и белые пятна в виде какой-то понятной им формы. Чтобы избавить вас от мучений, рисунок 10 предлагает интерпретацию, которую ваша зрительная система примет раз и навсегда. В противоположность предыдущему рисунку, вам не составит никакого труда реконструировать несколько штрихов туши на рисунке 7 в изображение двух беседующих людей.


Рисунок 7. Рисунок из "Mustard Seed Garden Manual of Painting", 1679-1701

Например, совершенно другой метод видения иллюстрируют исследования Вернера Рейхарта (Werner Reichardt) из г. Тюбинген, который в течение 14 лет изучал систему зрения и управления полетом комнатной мухи. За эти исследования он был удостоен премии Heineken Prize в 1985 году. Подобно многим другим насекомым муха имеет составные глаза, состоящие из многих сотен отдельных палочек, каждая их которых является отдельным фоточувствительным элементом. Система управления полетом мухи состоит из пяти независимых подсистем, работающих чрезвычайно быстро (скорость реакции примерно в 10 раз быстрее, чем у человека) и эффективно. Например, подсистема приземления работает следующим образом. Когда область обзора мухи "взрывается" (от того, что поверхность оказывается близко), муха направляется к центру "взрыва". Если центр находится над мухой, она автоматически переворачивается вверх ногами. Как только ноги мухи касаются поверхности, "подсистема" приземления отключается. При полете муха извлекает только два вида информации из своей области видимости: точку, в которой находится движущееся пятно определенного размера (которое должно совпадать с размером мухи на расстоянии 10 сантиметров), а также направление и скорость движения этого пятна по полю видимости. Обработка этих данных помогает автоматически корректировать траекторию полета. Весьма маловероятно, что муха владеет полной картиной окружающего мира. Она не видит ни поверхностей, ни объектов. Обработанные определенным образом входные зрительные данные передаются напрямую в двигательную подсистему. Таким образом, входные зрительные данные преобразуются не во внутреннее изображение, а в форму, которая позволяет мухе адекватно реагировать на ее окружение. То же самое можно сказать и о такой бесконечно более сложной системе, как человек.


Рисунок 8. Фигура Далленбаха

Есть много причин, почему ученые так долго воздерживались от решения фундаментального вопроса, как человек видит. Оказалось, что необходимо было сначала объяснить много других вопросов зрения – сложную структуру сетчатки, цветное видение, контрастность, остаточные изображения и т.д. Однако вопреки ожиданиям открытия в данных областях не способны пролить свет на решение основной проблемы. Еще более значительной проблемой было отсутствие какой либо общей концепции или схемы, в которой были бы перечислены все зрительные явления. Об относительной ограниченности обычных областей исследований можно почерпнуть в отличном руководстве T.N. Comsweet на тему зрительного восприятия, составленного на основе его лекций для студентов первого и второго семестров. В предисловии автор пишет: "Я стремлюсь описать фундаментальные аспекты, лежащие в основе огромного поля, которое мы небрежно называем зрительным восприятием". Однако, изучая содержание данной книги, этими "фундаментальными темами" оказываются поглощение света палочками и колбочками сетчатки, цветное зрение, способы, при помощи которых сенсорные клетки могут увеличивать или уменьшать пределы взаимного влияния друг на друга, частоту электрических сигналов, передаваемых через сенсорные клетки и т.д. Сегодня, исследования в данной области следуют совершенно новыми путями, что приводит к сбивающему с толку разнообразию в профессиональной прессе. И только специалист может сформировать общую картину развивающейся &quo;новой науки Зрения". Была всего одна попытка объединить несколько новых идей и результатов исследований в манере доступной для непрофессионала. И даже здесь вопросы "Что такое Зрение?" и "Как мы видим?" не стали главными вопросами обсуждения.

От изображения к обработке данных

Девид Марр (David Marr) из Лаборатории искусственного интеллекта при Массачусетском Технологическом Институте первым попытался приблизиться к предмету с совершенно другой стороны в своей книге "Зрение" (Vision), изданной уже после его смерти. В ней он стремился рассмотреть основную проблему и предложить возможные пути ее решения. Результаты Марра конечно не окончательны и по сей день открыты для исследований с разных направлений, но тем не менее основным достоинством его книги является ее логичность и последовательность выводов. Во всяком случае, подход Марра дает очень полезную основу, на котором можно строить исследования невозможных объектов и двойственных фигур. На следующих страницах мы попытаемся проследить ход мыслей Марра.

Марр описал недостатки традиционной теории зрительного восприятия так:

"Попытки понять зрительное восприятие, изучая лишь нейроны, подобно попытке понять полет птицы, изучая лишь ее перья. Это просто невозможно. Чтобы понять полет птицы нам необходимо понять аэродинамику, и только потом структура перьев и различные формы птичьих крыльев будут иметь для нас какое-то значение". В данном контексте Марр называет Дж. Дж. Гибсона (J. J. Gobson) первым, кто коснулся важных вопросов в данной области изучения зрения. По мнению Марра, самый важный вклад Гибсона состоял в том, что "самое важное в органах чувств то, что они являются информационными каналами из внешнего мира к нашему восприятию (...) Он поставил критически важный вопрос – Как каждый из нас получает одинаковые результаты при восприятии в повседневной жизни в постоянно изменяющихся условиях? Это очень важный вопрос, показывающий, что Гибсон правильно рассматривал проблему зрительного восприятия как восстановление из информации, полученной от сенсоров, "правильных" свойств объектов внешнего мира". И таким образом мы достигли области обработки информации.

Не должно возникать вопросов о том, что Марр хотел игнорировать другие объяснения феномена зрения. Напротив, он специально подчеркивает, что зрение не может быть удовлетворительно разъяснено только с одной точки зрения. Объяснения должны быть найдены для повседневных событий, согласующиеся с результатами экспериментальной психологии и всеми открытиями в данной области, сделанными психологами и неврологами в области анатомии нервной системы. Что касается обработки информации, то ученым компьютерных наук хотелось бы знать, как зрительная система может быть запрограммирована, какие алгоритмы наилучшим образом подходят для данной задачи. Короче, как зрение можно запрограммировать. Только всесторонняя теория может быть принята как удовлетворительное объяснение процесса видения.

Марр работал над данной проблемой с 1973 года по 1980 год. К сожалению, он не смог закончить свою работу, но он смог заложить прочный фундамент для дальнейших исследований.

От неврологии к зрительному механизму

Убеждение, что многие функции человека контролируются головным мозгом, разделяют неврологи с начала XIX века. Мнения разнились по вопросу, используются ли определенные части коры головного мозга для выполнения отдельных операций или для каждой операции задействуется весь мозг целиком. Сегодня знаменитый эксперимент французского невролога Пьера Поля Брока (Pierre Paul Broca) привел к всеобщему признанию теории специфического расположения. Брока лечил пациента, который не мог говорить 10 лет, хотя с голосовыми связками у него было все в порядке. Когда человек умер в 1861 году, вскрытие показало, что левая часть его мозга была деформирована. Брока сделал предположение, что речь контролируется этой частью коры головного мозга. Его теория была подтверждена последующими обследованиями пациентов с повреждениями головного мозга, что позволило, в конечном итоге, отметить центры жизненно важных функций человеческого мозга.


Рисунок 9. Отклик двух разных клеток мозга на оптические возбудители разных направлений

Столетием позже, в 1950-х годах, ученые Д.Х. Хьюбел (D.H. Hubel) и Т.Н. Визель (T.N. Wiesel) провели эксперименты в мозгом живых обезьян и кошек. В зрительном центре коры головного мозга они обнаружили нервные клетки, которые особенно чувствительны к горизонтальным, вертикальным и диагональным линиям в поле зрения (рис. 9). Их сложная техника микрохирургии была впоследствии принята к применению другими учеными.

Таким образом, кора головного мозга не просто содержит в себе центры для выполнения различных функции, но и внутри каждого центра, как, например, в зрительном центре, отдельные нервные клетки активируются только при поступлении очень специфических сигналов. Эти сигналы поступающие с сетчатки глаза, коррелируют с четко определенными ситуациями внешнего мира. Сегодня предполагается, что информация о различных формах и пространственном расположении объектов содержится в зрительной памяти, и информация от активированных нервных клеток сравнивается с этой хранимой информацией.

Эта теория детекторов повлияла на направление в исследованиях зрительного восприятия в середине 1960-х годов. Тем же самым путем последовали и ученые, связанные с "искусственным интеллектом". Компьютерная симуляция процесса человеческого зрения, также называемое "машинное зрение", рассматривалась как одна из наиболее легко достижимых целей в данных исследованиях. Но все сложилось несколько иначе. Скоро стало ясно, что фактически невозможно написать программы, которые были бы способны распознавать изменения интенсивности света, тени, структуру поверхности и беспорядочные наборы сложных объектов в значащие образы. Более того, такое распознавание образов потребовало неограниченных объемов памяти, так как изображения несчетного числа объектов необходимо хранить в памяти в бессчетном количестве вариаций расположения и ситуаций освещения.

Какие-либо дальнейшие продвижения в области распознавания образов в условиях реального мира не представлялись возможными. Вызывает сомнение надежда, что когда-либо компьютер сможет симулировать человеческий мозг. В сравнении с человеческим мозгом, в котором каждая нервная клетка имеет порядка 10 000 связей с другими нервными клетками, эквивалентное компьютерное соотношение 1:1 едва ли выглядит адекватным!


Рисунок 10. Разгадка фигуры Делленбаха

Лекция Элизабет Уоррингтон (Elizabeth Warrington)

В 1973 году Марр посетил лекцию британского невролога Элизабет Уоррингтон. Она отметила, что большое количество пациентов с париетальными повреждениями правой части мозга, которых она осмотрела, могли отлично распознавать и описывать множество объектов при условии, что эти объекты наблюдались ими в их обычном виде. Например, такие пациенты без особого труда идентифицировали ведро при виде сбоку, но не были способны распознать то же самое ведро при виде сверху. На самом деле, даже когда им говорили, что они смотрят на ведро сверху, они наотрез отказывались в это поверить! Еще более удивительным было поведение пациентов с повреждениями левой части мозга. Такие пациенты, как правило, не могут разговаривать, и, следовательно, вербально не могут назвать предмет, на который они смотрят, или описать его назначение. Тем не менее, они могут показать, что они правильно воспринимают геометрию предмета независимо от угла обзора. Это побудило Марра написать следующее: "Лекция Уоррингтон подтолкнула меня к следующим выводам. Во-первых, представление о форме объекта хранится в каком-то другом месте мозга, поэтому так сильно отличаются представления о форме предмета и его назначении. Во-вторых, зрение само может предоставить внутреннее описание формы наблюдаемого объекта, даже если этот объект не распознается обычным образом… Элизабет Уоррингтон указала на наиболее существенный факт человеческого зрения – оно говорит о форме, пространстве и взаимном расположении объектов." Если это действительно так, то ученые, работающие в области зрительного восприятия и искусственного интеллекта (в том числе и те, кто работают в области машинного зрения) должны будут поменять теорию детекторов из экспериментов Хьюбела на совершенно новый набор тактик.

Теория модулей


Рисунок 11. Стереограммы со случайными точками Белы Жулеса, парящий квадрат

Второй стартовой точкой в исследованиях Марра (после работы знакомства с работами Уоррингтон) является предположение, что наша зрительная система имеет модульную структуру. Выражаясь компьютерным языком, наша главная программа "Зрение" охватывает широкий круг подпрограмм, каждая из которых полностью независима от других, и может работать независимо от других подпрограмм. Ярким примером такой подпрограммы (или модуля) является стереоскопическое зрение, при помощи которого глубина воспринимается как результат обработки изображений, поступающих с обоих глаз, которые представляют собой немного отличающиеся друг от друга изображения. Прежде считалось, что чтобы видеть в трех измерениях, мы сначала распознаем изображения целиком, а потом решаем какие объекты находятся ближе, а какие дальше. В 1960 году Бела Жулес (Bela Julesz), который был удостоен премией Heineken в 1985 году, смог продемонстрировать, что пространственное восприятие двумя глазами происходит исключительно сравнением небольших различий между двумя изображениями, полученными с сетчаток обоих глаз. Таким образом, можно почувствовать глубину даже там, где нет и не предполагается никаких объектов. Для своих экспериментов Жулес придумал стереограммы, состоящие из случайно расположенных точек (см. рис. 11). Изображение, видимое правым глазом, идентично изображению видимому левым глазом во всем, кроме квадратной центральной области, которая обрезана и немного смещена к одному краю и снова совмещена с задним планом. Оставшийся белый промежуток затем был заполнен случайными точками. Если на два изображения (на которых не распознается никакого объекта) посмотреть сквозь стереоскоп, квадрат, который ранее был вырезан, будет выглядеть парящим над задним планом. Такие стереограммы содержат пространственные данные, которые автоматически обрабатываются нашей зрительной системой. Таким образом, стереоскопия является автономным модулем зрительной системы. Теория модулей показала себя достаточно эффективной.

От двухмерного изображения с сетчатки к трехмерной модели



Рисунок 12. В течение зрительного процесса изображение с сетчатки (слева) преобразуется в первичный эскиз, в котором изменения интенсивности становятся явными (справа)

Зрение – многошаговый процесс, который трансформирует двухмерные представления о внешнем мире (изображения с сетчатки) в полезную информацию для наблюдателя. Он начинается с двухмерного изображения, полученного с сетчатки глаза, которое, игнорируя пока цветное зрение, сохраняет только уровни интенсивности света. На первом шаге, при помощи только одиного модуля эти уровни интенсивности преобразуются в изменения интенсивности или, другими словами, в контуры, которые показывают резкие изменения интенсивности света. Марр точно установил, какой алгоритм задействуется в данном случае (описываемый математически, и, кстати, очень сложный), и как наше восприятие и нервные клетки исполняют этот алгоритм. Результат первого шага Марр назвал "первичным эскизом", который предлагает краткую информацию об изменениях интенсивности света, их взаимосвязях и распределении по зрительному полю (рис. 12). Это важный шаг, так как в видимом нами мире изменение интенсивности часто связано с естественными контурами объектов. Второй шаг подводит нас к тому, что Марр назвал "2,5-мерный эскиз". 2,5-мерный эскиз отражает ориентацию и глубину видимых поверхностей перед наблюдателем. Это изображение строится на основе данных не одного, а нескольких модулей. Марр придумал весьма широкое понятие "2,5-мерности", для того чтобы подчеркнуть, что мы работаем с пространственной информацией, которая видима с точки зрения наблюдателя. Для 2,5-мерный эскиза характерны искажения перспективы, и на данном этапе еще не может быть однозначно определено действительное пространственное расположение объектов. Изображение 2,5-мерного эскиза, представленного здесь (рис. 13), иллюстрирует несколько информационных участков при обработке такого наброска. Однако в нашем мозге изображения подобного вида не формируется.


Рисунок 13. Рисунок 2,5-мерного эскиза – "отцентрированное представление глубины и ориентации видимых поверхностей"

До сих пор зрительная система работала с использованием нескольких модулей автономно, автоматически и независимо от данных о внешнем мире, сохраненных в мозге. Однако в ходе заключительной стадии процесса есть возможность сослаться на уже имеющуюся информацию. Этот последний этап обработки предоставляет трехмерную модель – четкое описание, независимое от угла зрения наблюдателя и подходящее для непосредственного сравнения со зрительной информацией, хранимой в мозге.

Согласно Марру, главную роль в построении трехмерной модели играют компоненты направляющих осей форм объектов. Те, кто не знаком с этой идей, могут счесть ее неправдоподобной, но в действительности есть доказательства, подтверждающие данную гипотезу. Во-первых, множество объектов окружающего мира (в частности, животные и растения) могут быть вполне наглядно изображены в виде трубочных (или проволочных) моделей. Действительно, мы без труда можем распознать, что изображено на репродукции в виде компонентов направляющих осей (рис. 14).


Рисунок 14. Простые модели животных могут быть идентифицированы по их компонентам направляющих осей

Во-вторых, данная теория предлагает вероятное объяснение факта того, что мы способны визуально разобрать объект на составные части. Это отражено и в нашем языке, который дает различные имена каждой части объекта. Так, описывая тело человека, такие обозначения как "тело", "рука" и "палец" указывают на различные части тела согласно их компонентам осей (рис. 15).



Рисунок 16. Модель одной оси (слева) разбивается на отдельные компоненты осей (справа)

В-третьих, данная теория согласуется с нашей способностью обобщать и в то же время дифференцировать формы. Мы обобщаем, группируя вместе объекты с одними и теми же главными осями, и дифференцируем, анализируя дочерние оси подобно ветвям дерева. Марр предложил алгоритмы, при помощи которых 2,5-мерная модель преобразуется в трехмерную. Этот процесс также в основном является автономным. Марр отметил, что разработанные им алгоритмы работают только в случае использования чистых осей. Например, в случае применения его к мятому листу бумаги возможные оси будет очень сложно идентифицировать, и алгоритм будет неприменим.

Связь между трехмерной моделью и зрительными образами, хранимыми в мозге, активируется в процессе распознавания объекта.

Здесь есть большой пробел в наших знаниях. Как эти зрительные образы хранятся в мозге? Как протекает процесс распознавания? Как производится сравнение между известными изображениями и только что составленным трехмерным изображением? Это последний пункт, которого успел коснуться Марр (рис. 16), но необходимо получить огромное количество научных данных, чтобы внести определенность в данном вопросе.


Рисунок 16. Новые описания форм соотносятся с сохраненными формами сравнением, которое движется от обобщенной форме (сверху) к частной (внизу)

Хотя мы сами не осознаем различные фазы обработки зрительной информации, существует множество наглядных параллелей между фазами и различными способами, которыми мы в течение времени передавали впечатление о пространстве на двухмерной поверхности.

Так пуантилисты подчеркивают бесконтурное изображение сетчатки глаза, в то время как линейчатые изображения соответствуют стадии первичного наброска. Картины кубистов можно сопоставить с обработкой зрительных данных при подготовке к построению финальной трехмерной модели, хотя это, несомненно, и не было намерением художника.

Человек и компьютер

В своем комплексном подходе к предмету Марр стремился показать, что мы можем понять процесс зрения без необходимости привлечения знаний, которые уже доступны мозгу.

Таким образом, он открыл новую дорогу исследователям в области зрительного восприятия. Его идеи могут быть использованы для прокладки более эффективного пути к реализации зрительной машины. Когда Марр писал свою книгу, он, должно быть, знал о тех усилиях, которые его читателям предстоит приложить, чтобы следовать за его идеями и выводами. Это прослеживается по всей его работе и наиболее явно видно в заключительной главе "В защиту подхода". Это полемическое «обоснование» в размере 25 печатных страниц, на которых он использует благоприятный момент для обоснования своих целей. В данной главе он ведет беседу с воображаемым оппонентом, который нападает на Марра с аргументами, подобными следующим:

"Я все еще неудовлетворен описанием этого взаимосвязанного процесса и идеей того, что все оставшееся богатство деталей является лишь описанием. Это звучит как-то слишком примитивно... Поскольку мы продвигаемся все ближе к высказыванию, что мозг – это компьютер, должен сказать я все больше и больше опасаюсь за сохранение значения человеческих ценностей".

Марр предлагает интригующий ответ: "Утверждение, что мозг – это компьютер, корректно, но вводит в заблуждение. Мозг действительно узкоспециализированное устройство обработки информации, или скорее самое крупное из них. Рассмотрение нашего мозга как устройство обработки данных не принижает и не отрицает человеческие ценности. В любом случае, оно только поддерживает их и может, в конце концов, помочь нам понять, чем из такой информационной точки зрениями являются человеческие ценности, почему они имеют выборочное значение, и как они увязываются с социальными и общественными нормами, которыми обеспечили нас наши гены".

Строение глаза очень сложно. Он относится к органам чувств и отвечает за восприятие света. Фоторецепторы могут воспринимать лучи света только в определенном диапазоне длины волн. В основном раздражающее влияние на глаз оказывает свет с длиной волны 400-800 нм. После этого происходит формирование афферентных импульсов, которые поступают далее в центры головного мозга. Так формируются зрительные образы. Глаз выполняет разные функции, например, он может определить форму, величину предметов, расстояние от глаза до объекта, направление движения, освещенность, окрашенность и ряд других параметров.

Преломляющие среды

В строении глазного яблока выделяют две системы. К первой относят оптические среды, которые обладают светопреломляющей способностью. Вторая система включает рецепторный аппарат сетчатки.

Светопреломляющие среды глазного яблока объединяют роговицу, жидкое содержимое передней камеры глаза, хрусталик и стекловидное тело. В зависимости от типа среды, различается коэффициент преломления. В частности, у роговицы этот показатель составляет 1,37, у стеловидного тела и жидкости передней камеры - 1,33, у хрусталика - 1,38, а у его плотного ядра - 1,4. Основным условием нормального зрения является прозрачность светопреломляющих сред.

Фокусное расстояние определяет степень преломления оптической системы, выражающейся в диоприях. Связь в данном случае обратно пропорциональная. Диоптрия подразумевает под собой силу линзы, фокусное расстояние которой составляет 1 метр. Если измерять оптическую силу в диоптриях, то для прозрачных сред глаза она составит 43 для роговицы, а для хрусталика будет изменяться в зависимости от удаленности предмета. Если пациент смотрит вдаль, то она составит 19 (а для всей оптической системы -58), а при максимальном приближении предмета - 33 (для всей оптической системы - 70).

Статическая и динамическая рефракция глаза

Рефракция - это оптическая установка глазного яблока при фокусировке на удаленных предметах.

Если глаз нормальный, то пучок параллельных лучей, идущих от бесконечно далекого предмета, преломляются таким образом, что фокус их совпадает с центральной ямкой сетчатки. Такое глазное яблоко называется эмметропическим. Однако, далеко не всегда человек может похвастаться такими глазами.
Например, близорукость сопровождается увеличением длины глазного яблока (превышает 22,5-23 мм) или увеличением преломляющей силы глаза за счет изменения кривизны хрусталика. При этом параллельный пучок света не попадает на зону макулы, а проецируется перед ней. В результате на плоскость сетчатки попадают уже расходящиеся лучи. В этом случае изображение получается расплывчатым. Глаз называют миопическим. Чтобы изображение стало четким, необходимо передвинуть фокус на плоскость сетчатки. Этого можно достичь в том случае, если пучок света имеет не параллельные, а расходящиеся лучи. Этим можно объяснить тот факт, что близорукий пациент хорошо видит вблизи.

Для контактной коррекции миопии применяют двояковогнутые линзы, способные отодвинуть фокус в зону макулы. Этим можно компенсировать повышенную преломляющую способность вещества хрусталика. Довольно часто миопия носит наследственный характер. При этом пик заболеваемости приходится на школьный возраст и связан с нарушением гигиенических правил. В тяжелых случаях миопия способна вызвать вторичные изменения сетчатки, которые могут сопровождаться значительным снижением зрения и даже слепотой. В связи с этим очень важно вовремя проводить профилактические и лечебные мероприятия, в том числе правильно питаться, заниматься физкультурой, соблюдать гигиенические рекомендации.

Дальнозоркость сопровождается уменьшением длины глаза или снижением коэффициента преломления оптических сред. При этом пучок параллельных лучей от далекого предмета попадает за плоскость сетчатки. В макуле же проецируется участок сходящихся лучей, то есть изображение получается размытым. Глаз называют при этом дальнозорким, то есть гиперметропическим. В отличие от нормального глаза, ближайшая точка ясного видения в этом случае отстоит на некоторое расстояние. Для коррекции гиперметропии можно использовать двояко выпуклые линзы, способные увеличить преломляющую силу глаза. Важно понимать, что истинная врожденная или приобретенная дальнозоркость отличается от пресбиопии (старческой дальнозоркости).

При астигматизме нарушена способность концентрировать лучи света в одной точке, то ест фокус представлен пятном. Связано это с тем, что кривизна хрусталика различается по разным меридианам. При большей преломляющей способности по вертикали, астигматизм принято называть прямым, при увеличении горизонтальной составляющей - обратным. Даже в случае нормального глазного яблока оно несколько астигматично, так как идеально ровной роговицы не бывает. Если рассматривать диск с концентрическими кругами, то возникает незначительное их сплющивание. Если астигматизм приводит к нарушению зрительной функции, то его корректируют с использованием цилиндрических линз, которые располагают в соответствующих меридианах.

Аккомодация глаза обеспечивает четкое изображение даже при разной удаленности предметов. Эта функция становится возможной, благодаря эластическим свойствам хрусталика, который свободно меняет кривизну, а, следовательно, и преломляющую силу. В связи с этим даже при перемещении объекта лучи, отраженные от него, фокусируются на плоскость сетчатки. Когда человек рассматривает бесконечно отдаленные предметы, ресничная мышца находится в расслабленном состоянии, циннова связка, которая крепится к передней и задней хрусталиковой капсуле, натянута. При натяжении волокон цинновой связки возникает растягивание хрусталика, то есть кривизна его уменьшается. При взгляде вдаль за счет наименьшей кривизны хрусталика, его преломляющая способность также наименьшая. По мере приближения предмета к глазу происходит сокращение ресничной мышцы. В результате циннова связка расслабляется, то есть хрусталик перестает растягиваться. В случае полного расслабления волокон цинновой связки хрусталик под действием силы тяжести опускается примерно на 0,3 мм. В связи эластическими свойствами хрусталиковая линза при отсутствии натяжения становится более выпуклой, а преломляющая сила ее увеличивается.

За сокращение волокон ресничной мышцы отвечает возбуждение парасимпатичесих волокон глазодвигательного нерва, которые реагируют на приток афферентных импульсов в зону среднего мозга.

Если аккомодация не работает, то есть человек смотрит вдаль, то передний радиус кривизны хрусталика составляет 10 мм, при максимальном сокращении ресничной мышцы передний радиус кривизны хрусталика изменяется до 5,3 мм. Изменения заднего радиуса менее значительные: с 6 мм он уменьшается до 5,5 мм.

Аккомодация начинает работать в тот момент, когда предмет приближается на расстояние примерно 65 метров. При этом ресничная мышца переходит из расслабленного состояния в напряженное. Однако при такой удаленности предметов напряжение волокон не велико. Более существенное сокращение мышцы возникает при приближении предмета до 5-10 метров. В дальнейшем степень аккомодации прогрессивно увеличивается до тех пор, пока предмет не выходит из зоны четкой видимости. Наименьшее расстояние, на котором предмет еще виден отчетливо, называется точкой ближайшего ясного видения. В норме дальняя точка ясного видения располагается бесконечно далеко. Интересно, что у птиц и млекопитающих механизм аккомодации сходен с человеческим.

С возрастом происходит снижение эластичности хрусталиковой линзы, при этом амплитуда аккомодации снижается. При этом дальняя точка ясного видения обычно остается на прежнем месте, а ближайшая постепенно отодвигается.

Важно отметить, что при занятиях на близком расстоянии примерно треть аккомодации остается в запасе, поэтому глаз не утомляется.

При старческой дальнозоркости происходит удаления ближайшей точки ясного видения из-за снижения эластичности хрусталика. При пресбиопии уменьшается преломляющая сила хрусталиковой линзы даже при наибольшем усилии аккомодации. В возрасте десяти лет ближайшая точка располагается в 7 см от глаза, в 20 лет смещается на 8,3 см, в 30 лет - до 11 см, к шестидесяти годам она уже сдвигается к 80-100 см.
Построение изображения на сетчатке

Глаз является очень сложной оптической системой. Для изучения его свойств используют упрощенную модель, которую называют редуцированным глазом. Зрительная ось этой модели совпадает с осью обычного глазного яблока и проходит сквозь центры преломляющих сред, попадая в центральную ямку.

В редуцированной модели глаза к преломляющим средам относят только вещество стекловидного тела, в котором отсутствуют главные точки, лежащие в области пересечения преломляющих плоскостей. В истинном глазном яблоке две узловые точки располагаются на расстоянии 0,3 мм друг от друга, их заменяют одной точкой. Луч, который проходит через узловую точку, обязательно должен пройти через сопряженную с ней, покинув ее в параллельном направлении. То есть в редуцированной модели две точки заменены одной, которая помещена на расстоянии в 7,5 мм от поверхности роговицы, то есть в задней трети хрусталика. От сетчатки узловая точка удалена на 15 мм. В случае построения изображения все точки сетчатки рассматриваются как светящиеся. От каждой из них через узловую точку проводится прямая линия.

Изображение, которое формируется на сетчатке уменьшенное, обратное и действительное. Чтобы определить размер на сетчатке, нужно зафиксировать длинное слово, которое напечатано мелким шрифтом. При этом определяют, какое количество букв может различить пациент при полной неподвижности глазного яблока. После этого линейкой измеряют длину букв в миллиметрах. Далее путем геометрических расчетов можно определить длину изображения на сетчатке. Этот размер дает представление о диаметре желтого пятна, которое отвечает за центральное четкое зрение.

Изображение на сетчатке получается обратным, но мы видим предметы прямыми. Связано это с ежедневной тренировкой головного мозга, в частности зрительного анализатора. Чтобы определить положение в пространстве, помимо раздражителей с сетчатки, человек использует возбуждение проприорецепторов мышечного аппарата глаза, а также показания других анализаторов.

Можно сказать, что формирование представлений о положении тела в пространстве основывается на условных рефлексах.

Передача зрительной информации

В последних научных исследованиях было установлено, что в процессе эволюционного развития количество элементов, которые передают информацию с фоторецепторов, увеличивается вместе с числом параллельных цепей афферентных нейронов. Это можно заметить на слуховом анализаторе, но в большей степени именно на зрительном анализаторе.

В зрительном нерве имеется около миллиона нервных волокон. Каждое волокно разделяется на 5-6 частей в промежуточном мозге и заканчивается синапсами в зоне наружного коленчатого тела. При этом каждое волокно на пути от коленчатого тела к большим полушариям головного мозга контактирует с 5000 нейронов, относящихся к зрительному анализатору. Каждый же нейрон зрительного анализатора получает информацию еще от 4000 нейронов. В результате происходит значительное расширение зрительных контактов по направлению к большим полушариям головного мозга.

Фоторецепторы в сетчатке могут передать информацию однократно в тот момент, когда появился новый предмет. Если изображение не изменяется, то в результате адаптации рецепторы перестают возбуждаться, с этим связано то, что информация о статических изображениях не передается в мозг. Также в сетчатке имеются рецепторы, которые передают только изображения предметов, другие же реагируют на движение, появление, исчезновение светового сигнала.

Во время бодрствования по зрительным нервам постоянно предаются афферентные сигналы от фоторецеторов. При разных условиях освещения эти импульсы могут возбуждаться или тормозиться. В зрительном нерве можно выделить три типа волокон. К первому типу относят волокна, которые реагируют только на включение света. Второй тип волокон приводит к торможению афферентных импульсов и реагирует на прекращение освещения. Если повторно включить освещение, то разряд импульсов в этом типе волокон будет тормозиться. Третий тип включает наибольшее количество волокон. Они реагируют как на включение, так и на выключение освещения.

При математическом анализе результатов электрофизиологических исследований установлено, что по пути от сетчатки к зрительному анализатору происходит укрупнение изображения.

Элементами зрительного восприятия являются линии. Первым делом зрительная система выделяет контуры предметов. Чтобы выделить контуры предметов, достаточно врожденных механизмов.

В сетчатке имеется временная и пространственная суммация всех зрительных раздражений, относящихся к рецептивным полям. Число их при нормальном освещении может достигать 800 тысяч, что примерно соответствует количеству волокон в зрительном нерве.

Для регуляции обмена веществ в рецепторах сетчатки имеется ретикулярная формация. Если раздражать ее электрическим током при помощи игольчатых электродов, то изменяется частота афферентных импульсов, которые возникают в фоторецепторах в ответ на вспышку света. Ретикулярная формация воздействует на фоторецепторы через тонкие эфферентные гамма-волокна, которые проникают в сетчатку, а также через проприоцепторный аппарат. Обычно через некоторое время после того, как началось раздражение сетчатки афферентная импульсация внезапно возрастает. Эффект этот может сохраняться длительное время даже после прекращения раздражения. Можно сказать, что возбудимость сетчатки значительно повышают адренергические симпатические нейроны, которые относятся к ретикулярной формации. Их характеризует большой латентный период и длительно последействие.

Рецептивные поля сетчатки представлены двумя типами. К первому относят элементы, которые кодируют самые простые конфигурации образа с учетом отдельных структур. Второй тип отвечает за кодирование конфигурации в целом, за счет их работы происходит укрупнение зрительных образов. Другими словами, статическое кодирование начинается еще на уровне сетчатки. После выхода из сетчатки импульсы поступают в зону наружных коленчатых тел, где и происходит основное кодирование зрительного образа с применением крупных блоков. Также в этой зоне передаются отдельные фрагменты конфигурации изображения, скорость и направление его движения.

На протяжении жизни происходит условно-рефлекторное запоминание зрительных образов, имеющих биологическое значение. В результате рецепторы сетчатки могут предавать отдельные зрительные сигналы, но о методах декодирования пока не известно.

Из центральной ямки выходит примерно 30 тысяч нервных волокон, при помощи которых происходит передача 900 тысяч бит информации за 0,1 секунду. За это же время в зрительной зоне больших полушарий может быть обработано не более 4 бит информации. То есть объем зрительной информации ограничен не сетчаткой, а декодированием в высших центрах зрения.

Посредством глаза, а не глазом
Смотреть на мир умеет разум.
Уильям Блейк

Цели урока:

Образовательные:

  • раскрыть строение и значение зрительного анализатора, зрительных ощущений и восприятия;
  • углубить знания о строении и функции глаза как об оптической системе;
  • объяснить, как формируется изображение на сетчатке,
  • дать представление о близорукости и дальнозоркости, о видах коррекции зрения.

Развивающие:

  • формировать умения наблюдать, сопоставлять и делать выводы;
  • продолжать развивать логическое мышление;
  • продолжать формировать представление о единстве понятий окружающего мира.

Воспитательные:

  • воспитывать бережное отношение к своему здоровью, раскрыть вопросы гигиены зрения;
  • продолжать вырабатывать ответственное отношение к учёбе.

Оборудование:

  • таблица "Зрительный анализатор",
  • разборная модель глаза,
  • влажный препарат "Глаз млекопитающих",
  • раздаточный материал с иллюстрациями.

Ход урока

1. Организационный момент.

2. Актуализация знаний. Повторение темы "Строение глаза".

3. Объяснение нового материала:

Оптическая система глаза.

Сетчатка. Формирование изображений на сетчатке.

Оптические иллюзии.

Аккомодация глаза.

Преимущество зрения двумя глазами.

Движение глаз.

Дефекты зрения, их коррекция.

Гигиена зрения.

4. Закрепление.

5. Итоги урока. Постановка домашнего задания.

Повторение темы "Строение глаза".

Учитель биологии:

На прошлом уроке мы изучили тему "Строение глаза". Давайте вспомним материал этого урока. Продолжите фразу:

1) Зрительная зона полушарий большого мозга расположена в …

2) Цвет глазу придаёт …

3) Анализатор состоит из …

4) Вспомогательными органами глаза являются …

5) Глазное яблоко имеет … оболочек

6) Выпукло - вогнутой линзой глазного яблока является …

Пользуясь рисунком, расскажите об устройстве и назначении составляющих частей глаза.

Объяснение нового материала.

Учитель биологии:

Глаз - орган зрения животных и человека. Это самонастраивающийся прибор. Он позволяет видеть близкие и удалённые предметы. Хрусталик то сжимается почти в шарик, то растягивается, тем самым, меняя фокусное расстояние.

Оптическую систему глаза составляют роговица, хрусталик, стекловидное тело.

Сетчатка (сетчатая оболочка, покрывающая глазное дно) имеет толщину 0,15 -0,20 мм и состоит из нескольких слоёв нервных клеток. Первый слой прилегает к чёрным пигментным клеткам. Он образован зрительными рецепторами - палочками и колбочками. В сетчатке глаза человека палочек в сотни раз больше, чем колбочек. Палочки возбуждаются очень быстро слабым сумеречным светом, но не могут воспринимать цвет. Колбочки возбуждаются медленно и только ярким светом - они способны воспринимать цвет. Палочки равномерно распределяются по сетчатке. Прямо напротив зрачка в сетчатке находится жёлтое пятно, в состав которого входят исключительно колбочки. При рассмотрении предмета происходит перемещение взора так, что изображение попадает на жёлтое пятно.

От нервных клеток отходят отростки. В одном месте сетчатки они собираются в пучок и образуют зрительный нерв. Более миллиона волокон передают в мозг зрительную информацию в форме нервных импульсов. Это место, лишённое рецепторов, называют слепым пятном. Начавшийся в сетчатке анализ цвета, формы, освещённости предмета, его деталей заканчивается в зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате складывается представление о предмете. "Видит" мозг, а не глаз.

Итак, зрение - это подкорковый процесс. Он зависит от качества информации, поступающей от глаз в кору больших полушарий (затылочная область).

Учитель физики:

Мы выяснили, что оптическую систему глаза составляют роговица, хрусталик и стекловидное тело. Свет, преломляясь в оптической системе, даёт на сетчатке действительные, уменьшенные, обратные изображения рассматриваемых предметов.

Первым, кто доказал, что изображение на сетчатке глаза является перевёрнутым, построив ход лучей в оптической системе глаза, был Иоганн Кеплер (1571 - 1630). Чтобы проверить этот вывод, французский учёный Рене Декарт (1596 - 1650) взял глаз быка и, соскоблив с его задней стенки непрозрачный слой, поместил в отверстии, проделанном в оконном ставне. И тут же на полупрозрачной стенке глазного дна он увидел перевёрнутое изображение картины, наблюдавшейся из окна.

Почему же тогда мы видим все предметы такими, как они есть, т.е. неперевёрнутыми?

Дело в том, что процесс зрения непрерывно корректируется мозгом, получающим информацию не только через глаза, но и через другие органы чувств.

В 1896 году американский психолог Дж. Стреттон поставил на себе эксперимент. Он надел специальные очки, благодаря которым на сетчатке глаза изображения окружающих предметов оказались не обратными, а прямыми. И что же? Мир в сознании Стреттона перевернулся. Все предметы он стал видеть вверх ногами. Из-за этого произошло рассогласование в работе глаз с другими органами чувств. У учёного появились симптомы морской болезни. В течение трёх дней он ощущал тошноту. Однако на четвёртые сутки организм стал приходить в норму, а на пятый день Стреттон стал чувствовать так же, как и до эксперимента. Мозг учёного освоился с новыми условиями работы, и все предметы он снова стал видеть прямыми. Но, когда он снял очки, всё опять перевернулось. Уже через полтора часа зрение восстановилось, и он снова стал видеть нормально.

Любопытно, что подобное приспособление характерно лишь для человеческого мозга. Когда в одном из экспериментов переворачивающие очки одели обезьяне, то она получила такой психологический удар, что, сделав несколько неверных движений и упав, пришла в состояние, напоминающее кому. У неё стали угасать рефлексы, упало кровяное давление и дыхание стало частым и поверхностным. У человека ничего подобного не наблюдается. Однако, и человеческий мозг не всегда способен справиться с анализом изображения, получающегося на сетчатке глаза. В таких случаях возникают иллюзии зрения - наблюдаемый предмет нам кажется не таким, каков он есть на самом деле.

Наши глаза познавать не умеют природу предметов. А потому не навязывай им заблуждений рассудка. (Лукреций)

Зрительные самообманы

Мы часто говорим об "обмане зрения", "обмане слуха", но выражения эти неправильны. Обманов чувств нет. Философ Кант метко сказал по этому поводу: "Чувства не обманывают нас, - не потому, что они всегда правильно судят, а потому, что вовсе не судят".

Что же тогда обманывает нас при так называемых "обманах" чувств? Разумеется то, что в данном случае "судит", т.е. наш собственный мозг. Действительно, большая часть обманов зрения зависит исключительно оттого, что мы не только видим, но и бессознательно рассуждаем, причём невольно вводим себя в заблуждение. Это - обманы суждения, а не чувств.

Галерея образов, или что вы видите

Дочь, мать и усатый отец?

Индеец, гордо смотрящий на солнце и эскимос в капюшоне, повёрнутый спиной...

Молодой и пожилой мужчины

Молодая и старая женщины

Параллельны ли линии?

Является ли четырехугольник квадратом?

Который эллипс больше - нижний или внутренний верхний?

Что больше в этой фигуре - высота или ширина?

Какая прямая является продолжением первой?

Замечаете ли вы "дрожание" круга?

Есть ещё одна особенность зрения, о которой нельзя не сказать. Известно, что при изменении расстояния от линзы до предмета меняется и расстояние до его изображения. Каким же образом на сетчатке сохраняется чёткое изображение, когда мы переводим свой взгляд с удалённого предмета на более близкий?

Как вам стало известно, мышцы, которые прикреплены к хрусталику, способны изменять кривизну его поверхностей и тем самым оптическую силу глаза. Когда мы смотрим на далёкие предметы, эти мышцы находятся в расслабленном состоянии и кривизна хрусталика оказывается сравнительно небольшой. При переводе взгляда на близлежащие предметы глазные мышцы сжимают хрусталик, и его кривизна, а, следовательно, и оптическая сила, увеличиваются.

Способность глаза приспосабливаться к видению, как на близком, так и на более далёком расстоянии называется аккомодацией (от лат. accomodatio - приспособление).

Благодаря аккомодации человеку удаётся фокусировать изображения различных предметов на одном и том же расстоянии от хрусталика - на сетчатке глаза.

Однако при очень близком расположении рассматриваемого предмета напряжение мышц, деформирующих хрусталик, усиливается, и работа глаза становится утомительной. Оптимальное расстояние при чтении и при письме для нормального глаза составляет около 25 см. Это расстояние называют расстоянием наилучшего зрения.

Учитель биологии:

Какое преимущество даёт зрение двумя глазами?

1. Увеличивается поле зрения человека.

2. Именно благодаря наличию двух глаз мы можем различать, какой предмет находится ближе, какой дальше от нас.

Дело в том, что на сетчатке правого и левого глаза получаются отличающиеся друг от друга изображения (соответствующие взгляду на предметы как бы справа и слева). Чем ближе предмет, тем заметнее это различие. Оно и создаёт впечатление разницы в расстояниях. Эта же способность глаза позволяет видеть предмет объёмным, а не плоским. Такая способность получила название стереоскопического зрения. Совместная работа обоих мозговых полушарий обеспечивает различение предметов, их формы, величины, расположения, перемещения. Эффект объёмного пространства может возникнуть в тех случаях, когда мы рассматриваем плоскую картину.

В течение нескольких минут рассматривайте картинку на расстоянии 20 - 25 см от глаз.

В течение 30 с смотри на ведьму на метле не отрываясь.

Быстро смести взгляд на рисунок замка и смотри, считая до 10, в проём ворот. В проёме ты увидишь белую ведьму на сером фоне.

Когда вы рассматриваете свои глаза в зеркале, то, наверное, замечаете, что и крупные и едва заметные движения оба глаза осуществляют строго одновременно, в одном и том же направлении.

Всегда ли глаза так всё осматривают? Как мы ведём себя в уже знакомой комнате? Для чего же нам нужны движения глаз? Они нужны для первоначального осмотра. Осматривая, мы формируем целостный образ, и всё это передаётся на хранение в память. Поэтому для узнавания хорошо известных предметов движение глаз необязательно.

Учитель физики:

Одной из основных характеристик зрения является острота. Зрение людей меняется с возрастом, т.к. хрусталик теряет эластичность, способность менять свою кривизну. Появляются дальнозоркость или близорукость.

Близорукость - это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удалённых предметов поэтому оказываются на сетчатке нечёткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Расстояние наилучшего зрения для близорукого человека меньше 25 см. поэтому люди с подобным недостатком рения вынуждены читать текст, располагая его близко к глазам. Близорукость может быть обусловлена следующими причинами:

  • избыточной оптической силы глаза;
  • удлинением глаза вдоль его оптической оси.

Развивается она обычно в школьные годы и связана, как правило, с продолжительным чтением или письмом, особенно при недостаточном освещении и неправильном расположении источников света.

Дальнозоркость - это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удалённых предметов на сетчатке при этом снова оказываются нечёткими, расплывчатыми.

Учитель биологии:

Для профилактики зрительного утомления существует ряд комплексов упражнений. Предлагаем вам некоторые из них:

Вариант 1 (продолжительность 3-5 минут).

1. Исходное положение - сидя в удобной позе: позвоночник прямой, глаза открыты, взгляд устремлён прямо. Выполнять совсем легко, без напряжения.

Взгляд направить влево - прямо, вправо - прямо, вверх - прямо, вниз - прямо, без задержки в отведенном положении. Повторить 1-10 раз.

2. Взгляд смещать по диагонали: влево - вниз - прямо, вправо - вверх - прямо, вправо - вниз - прямо, влево - вверх - прямо. И постепенно увеличивать задержки в отведенном положении, дыхание произвольное, но следить, чтобы не было его задержки. Повторить 1-10 раз.

3. Круговые движения глаз: от 1 до 10 кругов влево и вправо. Вначале быстрее, потом постепенно снижать темп.

4. Смотреть на кончик пальца или карандаша, удерживаемого на расстоянии 30 см от глаз, а затем вдаль. Повторить несколько раз.

5. Смотреть прямо перед собой пристально и неподвижно, стараясь видеть более ясно, затем моргнуть несколько раз. Сжать веки, затем моргнуть несколько раз.

6. Изменение фокусного расстояния: смотреть на кончик носа, затем вдаль. Повторить несколько раз.

7. Массировать веки глаз, мягко поглаживая их указательным и средним пальцем в направлении от носа к вискам. Или: глаза закрыть и подушечками ладони, очень нежно касаясь, проводить по верхним векам от висков к переносице и обратно, всего 10 раз в среднем темпе.

8. Потереть ладони друг о друга и легко, без усилий прикрыть ими предварительно закрытые глаза, чтобы полностью загородить их от света на 1 мин. Представить погружение в полную темноту. Открыть глаза.

Вариант 2 (продолжительность 1-2 мин).

1. При счете 1-2 фиксация глаз на близком (расстояние 15-20 см) объекте, при счёте 3-7 взгляд переводится на дальний объект. При счёте 8 взгляд снова переводится на ближний объект.

2. При неподвижной голове на счёт 1 поворот глаз по вертикали вверх, при счёте 2-вниз, затем снова вверх. Повторить 10-15 раз.

3. Закрыть глаза на 10-15 секунд, открыть и проделать движения глазами вправо и влево, затем вверх и вниз (5 раз). Свободно, без напряжения направить взгляд вдаль.

Вариант 3 (продолжительность 2-3 минуты).

Упражнения выполняются в положении "сидя" откинувшись на спинку стула.

1. Смотреть прямо перед собой в течение 2-3 секунд, затем на 3-4 секунды опустить глаза вниз. Повторить упражнение в течение 30 секунд.

2. Поднять глаза вверх, опустить их вниз, отвести глаза вправо, потом влево. Повторить 3-4 раза. Продолжительность 6 секунд.

3. Поднять глаза вверх, сделать ими круговые движения против часовой стрелки, потом по часовой стрелки. Повторить 3-4 раза.

4. Крепко зажмурить глаза на 3-5 секунд, открыть на 3-5 секунд. Повторить 4-5 раз. Продолжительность 30-50 секунд.

Закрепление.

Предлагаются нестандартные ситуации.

1. Близорукий ученик воспринимает буквы, написанные на доске, расплывчатыми, нечёткими. Ему приходится напрягать зрение, чтобы аккомодировать глаз то на доску, то на тетрадь, что вредно как для зрительной, так и для нервной системы. Предложите конструкцию таких очков для школьников, чтобы избежать напряжения при чтении текста с доски.

2. Когда у человека мутнеет хрусталик глаза (например, при катаракте), его, как правило, удаляют и заменяют пластмассовой линзой. Такая замена лишает глаз способности к аккомодации и пациенту приходится пользоваться очками. Совсем недавно в Германии начали выпускать искусственный хрусталик, который может самофокусироваться. Предположите, какую конструктивную особенность придумали для аккомодации глаза?

3. Герберт Уэллс написал роман "Человек-невидимка". Агрессивная невидимая личность хотела подчинить себе весь мир. Подумайте, в чём несостоятельность этой идеи? Когда предмет в среде невидим? Как может видеть глаз человека-невидимки?

Итоги урока. Постановка домашнего задания.

  • § 57, 58 (биология),
  • § 37,38 (физика), предложите нестандартные задачи по изученной теме (по желанию).