Биологическое действие радиации на человека. Действие радиации на организм человека

Современные научные данные подтверждают существование механизмов, обеспечивающих приспособление организма к природным уровням лучевого воздействия. Однако при превышении определенного уровня ЕРФ адаптация будет неполноценной с той или иной вероятностью развития патологического состояния. Длительное влияние повышенного ЕРФ приводит к снижению радиоустойчивости, к нарушениям в иммунологической реактивности, а с последней связана заболеваемость.

После аварии на Чернобыльской АЭС удельный вес здоровых лиц среди эвакуированного населения снизился с 57 до 23%. Последствия этой аварии самым негативным образом сказываются на здоровье детского населения. Заболеваемость детей, пострадавших от воздействия радиации, в 2-3 раза выше, высок удельный вес часто болеющих детей со сниженным иммунным статусом (82,6%), у большинства из них выявлены аллергозы, наблюдается и рост числа соматических заболеваний. В селах Тоцкого района Оренбургской области, на территории, близкой к полигону, среди взрослого населения выше распространенность вегетососудистой дистонии, патологии щитовидной железы, беременности. Доля практически здоровых детей в этих селах составляет 6-7%, при 15% – в контрольном районе; 50% детей имеют отклонения сердечно-сосудистой системы, заболевания нервной системы, а также иммунодефициты (20-30% детей при 7-8% в контрольном районе), в волосах содержание марганца – в 7, меди – в 8, мышьяка – в 20 раз выше нормы.

Основной биологический эффект радиации – повреждение генома клеток, что проявляется ростом числа новообразований и наследственных заболеваний.

Малые дозы радиации повышают вероятность возникновения у людей онкозаболеваний. Предполагается, что около 10% онкозаболеваний в год обусловлено ЕРФ. Те формы рака, которые вызываются облучением, могут быть индуцированы и другими агентами. Как последствие катастрофы на Чернобыльской АЭС оценивается радиационное воздействие на щитовидную железу у жителей России. Ретроспективный и текущий анализ заболеваемости раком щитовидной железы у детей и подростков Брянской области показал, что первые клинические проявления отмечены через 4-5 лет после аварии, что соответствует минимальному сроку развития онкопатологии после облучения. Естественное распределение рака щитовидной железы – не более 1 случая на 1 миллион детей и подростков. Показательна динамика количества случаев рака щитовидной железы у детей Брянской области: 1987г. – 1; 1988г. – 0; 1989г. – 0; 1990г. – 4; 1991г. – 4; 1992г. – 8; 1993г. – 12; 1994г. – 19 случаев. Около 50% детей и подростков, у которых установлен рак щитовидной железы, проживали на территории с высокими уровнями радиоактивного загрязнения почвы. По прогностическим оценкам через 20 и 40 лет после аварии каждый четвертый случай рака щитовидной железы будет обусловлен радиацией.

Радон потенциально опасен для человека. Значительная часть продуктов его распада задерживается в легких. Поверхность легких составляет несколько квадратных метров. Это хороший фильтр, осаждающий радиоактивные аэрозоли, которые таким образом устилают легочную поверхность. Радиоактивные изотопы полония (дочерний продукт распада радона) «обстреливают» альфа-частицами поверхность легких и обусловливают свыше 97% дозы, связанной с радоном. Основной медико-биологический эффект радона высоких концентраций – рак легких. В рудниках повышенное содержание радона достоверно увеличивает частоту смерти горнорабочих от рака легких, причем зависимость линейная и беспороговая. Расчеты показывают, что при средней концентрации радона в жилых домах 20-25 Бк/м 3 один из трехсот ныне живущих погибнет от рака легких, вызванного радоном.

Признавая адаптацию к ЕРФ как к одному из облигатных условий жизни на Земле, невозможно отрицать влияние повышенных уровней на наследственность. Повышенные уровни ЕРФ приводят к увеличению уродств у новорожденных в горных районах, в районах с изверженными породами. Результаты экспериментов на животных и культурах клеток убеждают, что мутации под воздействием радиации (мутационные последствия, которые выражаются в сохранении генетических повреждений и возникновении нестабильности хромосомного аппарата) могут быть переданы будущим поколениям. Вероятность наследственных дефектов ниже, чем вероятность раковых заболеваний, и растет с увеличением дозы облучения числа лиц всей популяции, подвергнувшихся облучению, и количества браков между облученными лицами. По оценкам экспертов, ЕРФ в 2 мЗв вызывает, вероятно, 0,1-2% всех генетических мутаций. С ростом его уровня этот процент увеличивается.

Таким образом, признание ЕРФ в качестве облигатного фактора среды существования, в условиях действия которого возникла, развивалась и существует биологическая жизнь, позволяет говорить о существовании оптимального для жизнедеятельности уровня ЕРФ. Широкий диапазон радиочувствительности, характерный для разных групп населения, адаптация их к разным уровням ЕРФ, – все это предполагает существование широкого переходного диапазона от среднего к повышенному уровню ЕРФ.

Профилактические мероприятия

Выявление и изучение механизмов взаимодействия радиационных факторов с организмом человека, в том числе изучение закономерностей реагирования организма на лучевое влияние фоновых и повышенных уровней в конкретных экологических условиях, возможно лишь при накоплении фактических данных. В нашей стране функционирует Единая государственная система учета и контроля индивидуальных доз облучения граждан (ЕСКИД). Она основана на постоянно действующем мониторинге уровней естественного радиационного фона, контроле доз медицинского облучения и учете индивидуальных доз облучения персонала, работающего с источниками ионизирующего излучения.

Созданы нормативы по использованию природных строительных материалов и отходов производства в строительстве. В качестве таких нормативов для материалов, используемых в строительстве жилых домов и общественных зданий, были предложены значения эффективной концентрации радионуклидов 370 Бк/кг. Ни одно строительство не может быть начато без обследования грунта и стройматериалов; все, что строится, должно пройти обязательный контроль на радиоактивность, в том числе и на радон с выдачей соответствующего заключения. Установлены нормативы, регламентирующие содержание радона в жилых помещениях: среднегодовая равновесная активность радона во вновь строящихся зданиях не должна превышать 100 Бк/м 3 , а в старых зданиях – 200 Бк/м 3 . Если концентрация радона более 200 Бк/м 3 , то в этих зданиях требуется принятие мер по уменьшению его концентрации (вентиляция подвалов, декоративный ремонт с оклейкой стен и потолков обоями, застилка полов паркетом, ковровым покрытием и т.д.). Концентрация радона в помещениях 400 Бк/м 3 и выше требует переселения жильцов и перепрофилирования здания. В производственных зданиях допустимая активность радона – 310 Бк/м 3 .

С целью снижения уровней радиационного фона биосферы необходимо целеустремленно и последовательно проводить весь комплекс оздоровительных природоохранных мероприятий (технологических, санитарно-технических, организационных, архитектурно-планировочных).

Разработана и концепция поэтапной специализированной диспансеризации населения, проживающего на загрязненной радионуклидами территории предусматривает оценку состояния здоровья по клиническим и лабораторным данным; уточнение диагнозов заболеваний, которые могут быть связаны с воздействием радиации; верификацию информации о дозах облучения; индивидуальное медико-дозиметрическое расследование связи заболеваний с радиационным воздействием; лечение и реабилитацию.

Созданная Российская научная комиссия по радиационной защите (РНКЗ) предполагает комплексный подход по радиационной защите и реабилитации населения, т.е. создание и развитие социальной защиты населения и профилактики возможных неблагоприятных последствий для здоровья населения, подвергшегося повышенным уровням действия радиации.

Важным является ликвидация экологической неграмотности общества, в том числе формирование экологического мышления по вопросам радиационной безопасности. Необходима квалифицированная информационная помощь, в том числе и от медицинских работников, по профилактике радиофобии у населения.

Невероятного масштаба трагедия в Хиросиме и Нагасаки, затем ужасающая авария в украинском Чернобыле. Эти события наглядно продемонстрировали всему миру, насколько страшно и опасно воздействие радиации на человека. Последствия повергли в шок население всего земного шара. К сегодняшнему дню кроме естественного радиационного излучения Земли на нас действует слабое излучение и опасность с ним связанная от многих окружающих нас предметов: бытовой техники, линий электропередач, рентгенологического оборудования, мобильных телефонов и других гаджетов.

Радиационный фон присутствует на Земле с момента развития жизни. Для контроля его величины используются единицы – микро Рентген, Рентген, Зиверт и прочие. Его действие на организмы ученые начали изучать только 20-м веке. Особая опасность ионизационного излучения заключается в том, что оно опасно всем органам и каждой клетке организма.

Люди, чья работа связана с изучением или попавшие под его воздействие по другим причинам, часто умирают от переоблучения, развития злокачественных опухолей, радиационных ожогов. Радиацию нельзя увидеть, можно лишь ощутить ее действие на себе спустя некоторое время, отмечая характерные признаки.

Действие на живые организмы радиации

Допустимой для человека разовой дозой облучения является показатель до 0,05 Зиверт. Негативного действия на человека и опасности для здоровья в таком случае не возникает. Если получено облучение в пределах от 0,05 до 0,2 Зв, то у человека в несколько раз повышается риск развития онкологических заболеваний.

Смертельной дозой уже считается от 1 до 2 Зв, но в зависимости от условий облучения человека организм может прожить от нескольких месяцев до года. Мгновенная смерть наступает при полученных 10 Зв радиации.

Изучение ионизационного излучения позволило выявить следующие его особенности:

Облучение, получаемое в малых дозах, постепенно накапливается в организме;
после излучения у человека не сразу могут проявиться симптомы радиационного поражения, потому что проходит «инкубационный период». Чем больше полученная доза радиации, тем меньше этот период;
на живые организмы действие радиации опасно и тем, что оно проявляется на будущем потомстве;
необратимые изменения в составе крови возникают уже при дозе 0,002-0,005 Гр в сутки.

Последствия радиационного облучения в организме человека

Каждый орган и ткани человеческого организма по-разному восприимчивы к полученным дозам. Самыми уязвимыми являются легкие, костный мозг, половые железы, потому что именно здесь происходит максимально быстрое деление клеток. Далее следуют желудок, печень, пищевод, щитовидка и кожные покровы. Биологическое воздействие проявляется двумя группами изменений:

Соматические (телесные) – возникают непосредственно у человека, получившего дозу;

Генетические – проявляются у потомства человека, пораженного радиацией.
Самое первой после радиационного воздействия страдает иммунная система.

Человеческий организм становится ослабленным, беззащитным перед атакой вирусов и инфекций. В щитовидной железе скапливается почти 30% от общего числа продуктов распада радионуклидов.

Облучение приводит к лучевой болезни, в результате которой необратимо нарушается естественный, правильный процесс деления клеток. Это приводит к чрезмерному разрастанию и увеличению тканей и органов, образованию злокачественных опухолей. От полученной дозы у человека выпадают волосы на голове и на теле, а сам пострадавший чувствует слабость, тошноту, общее ухудшение самочувствия.

Страшные последствия для живых от радиации после взрыва ядерной бомбы

Выше уже было сказано, что получение больших доз радиации действует на клетки разрушающе и приводит к последствиям, поистине ужасающим. Об этом свидетельствует количество жертв после сброшенных атомных бомб на Хиросиму и Нагасаки.

80 тысяч жителей, которым суждено было оказаться в Хиросиме в эпицентре взрыва атомной бомбы, просто испарились за доли секунды от высокой температуры. Обуглившиеся за секунды тела покрыли территорию практически всего города, а стрелки часов повсеместно замерли на цифрах 8.15. Через пять лет было заявлено уже о 160 тысячах умерших, а на сегодняшний день общее количество погибших в Хиросиме исчисляется 200 тысячами человек. В Нагасаки на момент взрыва погибшими оказались 65 тысяч человек, а спустя пять лет эта цифра увеличилась до 140 тысяч с учетом всех, кто пострадал от облучения.

Нестерпимо яркую вспышку сопроводила мощная взрывная волна, удушающая и убивающая на своем пути абсолютно все. Тем, кому удалось выжить в этих адских условиях, столкнулись с первыми признаками лучевой болезни уже через несколько часов. Ее симптомы и особенности в то время были изучены слабо, поэтому огромному количеству людей медицина так и не смогла помочь.

Последствия взрыва на Чернобыльской АЭС

В момент катастрофы погибли 2 сотрудника, в течение нескольких месяцев умерли от облучения еще 32 человека. Еще на протяжении 15 лет скончались около сотни человек, получивших дозу радиации. Почти 62 тысячи ликвидаторов с высоким уровнем облучения приобрели онкологические заболевания.

На тот момент далеко не все спасатели имели приборы, чтобы измерять уровень радиации. Люди не сразу были эвакуированы из опасного региона. Об угрозе опаснейшего заражения никто не сообщил своевременно, побоявшись панических настроений в обществе. До сегодняшнего дня не стихают разговоры о том, что количество жертв в Чернобыле после взрыва атомного реактора можно было бы существенно снизить.

За всю свою жизнь человек получает дозу облучения от естественных источников, и при нормальном состоянии среды обитания такое облучение не вызывает каких-либо изменений в органах и тканях человека.

Но по самой своей природе радиация вредна для жизни. Малые дозы могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.

Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Раковые заболевания, однако, проявляются спустя много лет после облучения - как правило, не ранее чем через одно-два десятилетия. А врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, по определению проявляются лишь в следующем или последующих поколениях: это дети, внуки и более отдаленные потомки индивидуума, подвергшегося облучению.

В то время как идентификация быстро проявляющихся («острых») последствий от действия больших доз облучения не составляет труда, обнаружить отдаленные последствия от малых доз облучения почти всегда оказывается очень трудно. Частично это объясняется тем, что для их проявления должно пройти очень много времени. Но даже и обнаружив какие-то эффекты. требуется еще доказать, что они объясняются действием радиации, поскольку и рак, и повреждения генетического аппарата могут быть вызваны не только радиацией, но и множеством других причин.

Чтобы вызвать острое поражение организма, дозы облучения должны превышать определенный уровень, но нет никаких оснований считать, что это правило действует в случае таких последствий, как рак или повреждение генетического аппарата. По крайней мере, теоретически для этого достаточно самой малой дозы. Однако в то же самое время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Точно так же любой человек, подвергшийся действию радиации, совсем не обязательно должен заболеть раком или стать носителем наследственных болезней; однако вероятность, или риск , наступления таких последствий у него больше, чем у человека, который не был облучен. И риск этот тем больше, чем больше доза облучения.

НКДАР ООН пытается установить со всей возможной достоверностью, какому дополнительному риску подвергаются люди при различных дозах облучения. Вероятно, в области изучения действия радиации на человека и окружающую среду было проведено больше исследований, чем при изучении любого другого источника повышенной опасности. Однако чем отдаленнее эффект и меньше доза, тем меньше полезных сведений, которыми мы располагаем на сегодняшний день.

Острое поражение организма происходит при больших дозах облучения. Радиация оказывает подобное действие, лишь начиная с некоторой минимальной, или «пороговой», дозы облучения.

Большое количество сведений было получено при анализе результатов применения лучевой терапии для лечения рака. Многолетний опыт позволил медикам получить обширную информацию о реакции тканей человека на облучение. Эта реакция для разных органов и тканей оказалась неодинаковой, причем различия очень велики. Величина же дозы, определяющая тяжесть поражения организма, зависит от того, получает ли ее организм сразу или в несколько приемов. большинство органов успевает в той или иной степени залечить радиационные повреждения и поэтому лучше переносит серию мелких доз, нежели ту же суммарную дозу облучения, полученную за один прием.

Разумеется, если одна доза облучения достаточно велика, облученный человек погибнет. Во всяком случае, очень большие дозы облучения порядка 100 Гр вызывают настолько серьезное поражение центральной нервной системы, что смерть, как правило, наступает в течение нескольких часов или дней.

При дозах облучения от 10 до 50 Гр при облучении всего тела поражение ЦНС может оказаться не настолько серьезным, чтобы привести к летальному исходу, однако облученный человек, скорее всего, все равно умрет через одну-две недели от кровоизлияний в желудочно-кишечном тракте.

При еще меньших дозах может не произойти серьезных повреждений желудочно-кишечного тракта или организм с ними справится, и тем не менее смерть может наступить через один-два месяца с момента облучения главным образом из-за разрушения клеток красного костного мозга - главного компонента кроветворной системы организма: от дозы в 3-5 Гр при облучении всего тела умирает примерно половина всех облученных.

Таким образом, в этом диапазоне доз облучения большие дозы отличаются от меньших лишь тем, что смерть в первом случае наступает раньше, а во втором - позже.

Разумеется, чаще всего человек умирает в результате одновременного действия всех указанных последствий облучения. Исследования в этой области необходимы, поскольку полученные данные нужны для оценки последствий ядерной войны и действия больших доз облучения при авариях ядерных установок и устройств.

Красный костный мозг и другие элементы кроветворной системы наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах облучения 0,5-1 Гр. К счастью, они обладают также замечательной способностью к регенерации, и если доза облучения не настолько велика, чтобы вызвать повреждения всех клеток, кроветворная система может полностью восстановить свои функции. Если же облучению подверглось не все тело, а какая-то его часть. то уцелевших клеток мозга бывает достаточно для полного возмещения поврежденных клеток.

Репродуктивные органы и глаза также отличаются повышенной чувствительностью к облучению. Однократное облучение семенников при дозе всего лишь в 0,1 Гр приводит к временной стерильности мужчин, а дозы свыше двух грэев могут привести к постоянной стерильности: лишь через много лет семенники смогут вновь продуцировать полноценную сперму. По-видимому, семенники являются единственным исключением из общего правила: суммарная доза облучения, полученная в несколько приемов, для них более, а не менее опасна, чем та же доза, полученная за один прием. Яичники гораздо менее чувствительны к действию радиации, по крайней мере, у взрослых женщин. Но однократная доза более трех грэев все же приводит к их стерильности, хотя еще большие дозы при дробном облучении никак не сказываются на способности к деторождению.

Наиболее уязвимой для радиации частью глаза является хрусталик. Погибшие клетки становятся непрозрачными, а разрастание помутневших участков приводит сначала к катаракте, а затем и к полной слепоте. Чем больше доза, тем больше потеря зрения. Помутневшие участки могут образоваться при дозах облучения 2 Гр и менее. Более тяжелая форма поражения глаза - прогрессирующая катаракта - наблюдается при дозах около 5 Гр. Показано, что даже связанное с рядом работ профессиональное облучение вредно для глаз: дозы от 0,5 до 2 Гр, полученные в течение десяти-двадцати лет, приводят к увеличению плотности и помутнению хрусталика.

Дети также крайне чувствительны к действию радиации. Относительно небольшие дозы при облучении хрящевой ткани могут замедлить или вовсе остановить у них рост костей, что приводит к аномалиям развития скелета. Чем меньше возраст ребенка, тем сильнее подавляется рост костей. Суммарной дозы порядка 10 Гр, полученной в течение нескольких недель при ежедневном облучении, бывает достаточно, чтобы вызвать некоторые аномалии в развитии скелета. По-видимому, для такого действия радиации не существует никакого порогового эффекта. Оказалось также, что облучение мозга ребенка при лучевой терапии может вызвать изменения в его характере, привести к потере памяти, а у очень маленьких детей даже к слабоумию и идиотии. Кости и мозг взрослого человека способны выдерживать гораздо большие дозы.

Крайне чувствителен к действию радиации и мозг плода, особенно если мать подвергается облучению между восьмой и пятнадцатой неделями беременности. В этот период у плода формируется кора головного мозга, и существует большой риск того, что в результате облучения матери (например, рентгеновскими лучами) родится умственно отсталый ребенок. Именно таким образом пострадали 30 детей, облученных в период внутриутробного развития во время атомных бомбардировок Хиросимы и Нагасаки. Хотя индивидуальный риск при этом большой, а последствия доставляют особенно много страданий. число женщин, находящихся на этой стадии беременности, в любой момент времени составляет лишь небольшую часть всего населения. Это, однако, наиболее серьезный по своим последствиям эффект из всех известных эффектов облучения плода человека, хотя после облучения плодов и эмбрионов животных в период их внутриутробного развития было обнаружено немало других серьезных последствий, включая пороки развития, недоразвитость и летальный исход.

Большинство тканей взрослого человека относительно мало чувствительны к действию радиации. Почки выдерживают суммарную дозу около 23 Гр, полученную в течение пяти недель, без особого для себя вреда, печень - по меньшей мере 40 Гр за месяц, мочевой пузырь - по меньшей мере 55 Гр за четыре недели, а зрелая хрящевая ткань - до 70 Гр. Легкие - чрезвычайно сложный орган - гораздо более уязвимы, а в кровеносных сосудах незначительные, но, возможно, существенные изменения могут происходить уже при относительно небольших дозах.

Конечно, облучение в терапевтических дозах, как и всякое другое облучение, может вызвать заболевание раком в будущем или привести к неблагоприятным генетическим последствиям. Облучение в терапевтических дозах, однако, применяют обыкновенно для лечения рака, когда человек смертельно болен, а поскольку пациенты в среднем довольно пожилые люди, вероятность того, что они будут иметь детей, также относительно мала. Однако далеко не так просто оценить, насколько велик этот риск при гораздо меньших дозах облучения, которые люди получают в своей повседневной жизни и на работе, и на этот счет существуют самые разные мнения среди общественности.

Рак - наиболее серьезное из всех последствий облучения человека при малых дозах. по крайней мере непосредственно для тех людей. которые подверглись облучению. В самом деле обширные обследования, охватившие около 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки в 1945 году показали, что пока рак является единственной причиной повышенной смертности в этой группе населения.

Согласно имеющимся данным первыми в группе раковых заболеваний, поражающих население в результате облучения, стоят лейкозы. Они вызывают гибель людей в среднем через десять лет с момента облучения - гораздо раньше, чем другие виды раковых заболеваний.

Самыми распространенными видами рака, вызванными действием радиации, оказались рак молочной железы и рак щитовидной железы. По оценкам НКДАР, примерно у десяти человек из тысячи облученных отмечается рак щитовидной железы, а у десяти женщин из тысячи - рак молочной железы (в расчете на каждый грэй индивидуальной поглощенной дозы).

Однако обе разновидности рака в принципе излечимы, а смертность от рака щитовидной железы особенно низка.

Рак легких, напротив, - беспощадный убийца. Он тоже принадлежит к распространенным разновидностям раковых заболеваний среди облученных групп населения.

Рак других органов и тканей, как, оказалось, встречается среди облученных групп населения реже. Согласно оценкам НКДАР, вероятность умереть от рака желудка или толстой кишки составляет примерно всего лишь 1/1000 на каждый грэй средней индивидуальной дозы облучения, а риск возникновения рака костных тканей, пищевода. тонкой кишки, мочевого пузыря, поджелудочной железы, прямой кишки и лимфатических тканей еще меньше и составляет примерно от 0.2 до 0,5 на каждую тысячу и на каждый грэй средней индивидуальной дозы облучения.

Дети более чувствительны к облучению. чем взрослые, а при облучении плода риск заболевания раком, по-видимому, еще больше. В некоторых работах действительно сообщалось, что детская смертность от рака больше среди тех детей, матери которых в период беременности подверглись воздействию рентгеновских лучей, однако НКДАР пока не убежден, что причина установлена верно.

Генетические последствия облучения Изучение их связано с еще большими трудностями, чем в случае рака. Во-первых, очень мало известно о том, какие повреждения возникают в генетическом аппарате человека при облучении; во-вторых, полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений; и, в-третьих. как и в случае рака, эти дефекты невозможно отличить от тех, которые возникли совсем по другим причинам.

Около 10% всех живых новорожденных имеют те или иные генетические дефекты, начиная от необременительных физических недостатков типа дальтонизма и кончая такими тяжелыми состояниями, как синдром Дауна, хорея Гентингтона и различные пороки развития. Многие из эмбрионов и плодов с тяжелыми наследственными нарушениями не доживают до рождения; согласно имеющимся данным, около половины всех случаев спонтанного аборта связаны с аномалиями в генетическом материале. Но даже если дети с наследственными дефектами рождаются живыми, вероятность для них дожить до своего первого дня рождения в пять раз меньше, чем для нормальных детей.

Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах.

Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться лишь в том случае, если у обоих родителей мутантным является один и тот же ген; такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще).

Оба типа аномалий могут привести к наследственным заболеваниям в последующих поколениях, а могут и не проявиться вообще.

наши тела вместе с воздухом.

естественной радиации.

облучения.

проводилось.

По материалам staynatural.ru

Радиация вокруг нас. Она естественна для окружающей среды нашей

планеты - радиация существовала на Земле с самого её зарождения.

Следовательно, жизнь развивалась в условиях постоянной ионизирующей

радиации на планете. Излучение приходит из космоса, от земли, а также

вырабатывается внутри наших тел. Радиация присутствует в воздухе,

которым мы дышим, в еде и воде, а также в строительных материалах,

которые мы используем для наших домов. Некоторые продукты содержат

больше радиации, чем другие (например, бананы и бразильские орехи). В

домах из камня и кирпича уровень радиации больше, чем в строениях из

дерева и тростника. Гранит обладает наиболее высоким уровнем радиации

среди строительных материалов.

Уровень естественной радиации на планете варьируется от региона к

региону. Он зависит от типа местности (горные регионы получают больше

радиации из космоса), а также от типа почвы (в местах зарождения урана

уровень радиации намного больше). Большая часть излучения для людей

происходит от радона - газа, образуемого в коре Земли, который попадает в

наши тела вместе с воздухом.

Среднестатистический житель планеты получает половину облучения из

природных источников. За вторую половину обычно ответственны медицинские

обследования (рентген и др.). Из естественных источников мы обычно

получаем около 310 мили Р. Обычно, две трети этой радиации излучают газы

радон и торон. Оставшаяся треть приходит из космоса, от земли и от

наших собственных тел. При этом, до настоящего момента ученые не

обнаружили никакого потенциального негативного влияния естественной

радиации на человека и его здоровье.

Человек получает также небольшую дозу искусственно созданного

излучения (от рентгенов, техники, антенн и т.д.), которая обычно не

превышает 310милиР. Компьютерная томография, например, дарит нам дозу

около 150 милиР. Процедуры вроде рентгена и флюорографии дают еще

где-то 150 милиР. Вдобавок, определенным уровнем излучения обладают

некоторые продукты: табак, удобрения, сварочные аппараты, указатели

«Выход», светящиеся в темноте предметы, дымовые детекторы. Именно

поэтому довольно сложно определить точный уровень облучения в год для

отдельного человека: это зависит от личных привычек, работы, места

жительства и т.д. Хотя существуют различия между естественной и

искусственно созданной радиацией, оба типа одинаково влияют на человека.

Биологические влияние радиации на человека

Мы определяет биологическое влияние радиации её воздействием на живую

клетку. В случае несильного облучения, биологическое влияние столь

мало, что часто его просто невозможно определить. У человеческого тела

есть определенные защитные механизмы, как против радиации, так и против

химических канцерогенов. Следовательно, биологическое влияние радиации

на живую клетку можно свести к трем вариантам: (1) поврежденная клетка

восстанавливается сама, останавливая негативные последствия. (2) клетка

умирает, как умирают миллионы клеток каждый день, и её замещает новая в

ходе естественных биологических процессов. (3) клетка восстанавливается

неправильно, что приводит к биофизической вариации.

Связь между радиацией и развитием рака наблюдалась, в основном, при

высоком уровне облучения (например, при разрыве атомной бомбы в Японии,

или при прохождении определенной терапии, предусматривающей сильное

облучение). Рак, связанный с высоким облучением (больше 50,000 милиР),

включает лейкемию, рак груди, мочевого пузыря, толстой кишки, печени,

легких, пищевода, яичек и желудка. Научная литература также предполагает

связь между ионизирующей радиацией и раком предстательной железы,

полости носа, глотки и гортани, а также поджелудочной железы. Период

между облучением и непосредственным развитием рака называется латентным и

может продолжаться несколько лет. Рак, возникающий от облучения, нельзя

отличить от заболевания, возникшего по другим причинам. Именно поэтому,

Национальный институт раковых заболеваний США указывает на то, что и

другие привычки и факторы (курение, потребление алкогольных напитков и

диета) существенно влияю на развитие тех же самых заболеваний.

Хотя сильное облучение связано с раком, на данный момент еще нет

доказательств того, что низкие дозы радиации (менее 10,000 милиР)

способны вызвать развитие раковых заболеваний. Люди, проживающие в

регионах с высоким уровнем естественной радиации, не более подвержены

этим заболеваниям, чем жители регионов с более низким уровнем

естественной радиации.

Тем не менее, органы по защите от радиации продолжают действовать на

основе предположения, что любое количество радиации способно привести к

раковым заболеваниям, при этом, чем выше доза облучения, тем вероятнее

развитие рака. Данная гипотеза сейчас воспринимается с сомнением и

считается несколько преувеличенной.

Сильное облучение имеет тенденцию убивать клетки, в то время как

низкое - повреждать их и изменять генетический год (ДНК) облученной

клетки. Сильное облучение способно убить так много клеток, что это

приводит к немедленному поражению тканей и органов. В этом случае, тело

реагирует на аварийную ситуацию - эта реакция называется острым

синдромом облучения. Чем выше доза радиации, тем быстрее проявляется

воздействие, и тем вероятнее летальный исход. Этот синдром наблюдался у

многих выживших после разрыва ядерной бомбы в 1945, а также у работников

атомной станции Чернобыль в 1986 году. Около 134 работников станции и

пожарных, которые старались потушить пламя, подверглись мощнейшему

излучению (80,000 -1,600,000 милиР). 28 из них умерли в течении 3-х

месяцев после аварии. Двое умерли в течении 2-х дней от ожогов и

облучения.

Радиация по-разному влияет на людей. Именно поэтому, смертельную дозу

облучения установить весьма трудно. Тем не менее, считается, что

половина населения Земли умерла бы в течении 30 дней после облучения в

350,000 - 500,000 милиР, продолжающегося от нескольких минут до

нескольких часов. Летальный исход и его срок в данном случае зависит от

состояния здоровья человека до облучения и качества медицинского

обслуживания, полученного после. Тем не менее, летальный исход возможен

только при облучении всего тела. При облучении отдельных его частей,

результаты будут менее драматичными - например, ожоги кожи.

Низкие дозы радиации (менее 10,000 милиР), продолжающиеся на

протяжении длительного периода времени не вызывают немедленного

поражения отдельных органов. Воздействие несильного, но длительного

облучения проявляется на клеточном уровне. Поэтому изменения в теле

человека могут проходить скрыто на протяжении десятков лет (от 5 до 20

Изменения на генетическом уровне и развитие рака - это основные

риски, связанные с радиоактивным облучением. Вероятность развития рака

после облучения в 5 раз превышает вероятность генетической мутации. К

генетическим эффектам относится изменение репродуктивных клеток, которое

передается к детям. Подобная мутация может проявиться у первого

поколения потомков, или через несколько поколений, в зависимости от

того, являются ли мутировавшие гены доминантными или рецессивными.

Хотя передача мутировавших ген была доказана в лабораторных условиях

на животных, у потомков людей, переживших разрыв ядерной бомбы в

Хиросиме и Нагасаки, ничего подобного не наблюдалось.

Американские исследования не зафиксировали какой-либо генетической

мутации у людей, живущих рядом с атомными электростанциями. Тем не

менее, необходимо отметить, что исследований о более высокой

предрасположенности к развитию рака у жителей этих регионов пока еще не

проводилось.

По материалам staynatural.ru

Воздействие радиации на организм может быть различным, но почти всегда оно негативно. В малых дозах радиационное излучение может стать катализатором процессов, приводящих к раку или генетическим нарушениям, а в больших дозах часто приводит к полной или частичной гибели организма вследствие разрушения клеток тканей.

Сложность в отслеживании последовательности процессов, вызванных облучением, объясняется тем, что последствия облучения, особенно при небольших дозах, могут проявиться не сразу, и зачастую для развития болезни требуются годы или даже десятилетия. Кроме того, вследствие различной проникающей способности разных видов радиоактивных излучений они оказывают неодинаковое воздействие на организм: -частицы наиболее опасны, однако для -излучения даже лист бумаги является непреодолимой преградой; -излучение способно проходить в ткани организма на глубину один - два сантиметра; - излучение характеризуется наибольшей проникающей способностью: его может задержать лишь толстая плита из материалов, имеющих высокий коэффициент поглощения, например, из бетона или свинца.

Также различается чувствительность отдельных органов к радиоактивному излучению. Поэтому, чтобы получить наиболее достоверную информацию о степени риска, необходимо учитывать соответствующие коэффициенты чувствительности тканей при расчете эквивалентной дозы облучения:

  • 0,03 - костная ткань
  • 0,03 - щитовидная железа
  • 0,12 - красный костный мозг
  • 0,12 - легкие
  • 0,15 - молочная железа
  • 0,25 - яичники или семенники
  • 0,30 - другие ткани
  • 1,00 - организм в целом.

Вероятность повреждения тканей зависит от суммарной дозы и от величины дозировки, так как благодаря репарационным способностям большинство органов имеют возможность восстановиться после серии мелких доз.

В таблице 1 приведены крайние значения допустимых доз радиации:

Таблица 1.

Тем не менее, существуют дозы, при которых летальный исход практически неизбежен. Так, например, дозы порядка 100 г приводят к смерти через несколько дней или даже часов вследствие повреждения центральной нервной системы, от кровоизлияния в результате дозы облучения в 10-50 г смерть наступает через одну - две недели, а доза в 3-5 грамм грозит обернуться летальным исходом примерно половине облученных.

Знания конкретной реакции организма на те или иные дозы необходимы для оценки последствий действия больших доз облучения при авариях ядерных установок и устройств или опасности облучения при длительном нахождении в районах повышенного радиационного излучения, как от естественных источников, так и в случае радиоактивного загрязнения. Однако даже малые дозы радиации не безвредны и их влияние на организм и здоровье будущих поколений до конца не изучено. Однако можно предположить, что радиация может вызвать, прежде всего, генные и хромосомные мутации, что в последствии может привести к проявлению рецессивных мутаций.

Следует более подробно рассмотреть наиболее распространенные и серьезные повреждения, вызванные облучением, а именно рак и генетические нарушения.

В случае рака трудно оценить вероятность заболевания как следствия облучения. Любая, даже самая малая доза, может привести к необратимым последствиям, но это не предопределено. Тем не менее, установлено, что вероятность заболевания возрастает прямо пропорционально дозе облучения.

Среди наиболее распространенных раковых заболеваний, вызванных облучением, выделяются лейкозы. Оценка вероятности летального исхода при лейкозе более надежна, чем аналогичные оценки для других видов раковых заболеваний (приложение 4). Это можно объяснить тем, что лейкозы первыми проявляют себя, вызывая смерть в среднем через 10 лет после момента облучения. За лейкозами “по популярности” следуют: рак молочной железы, рак щитовидной железы и рак легких. Менее чувствительны желудок, печень, кишечник и другие органы и ткани.

Воздействие радиологического излучения резко усиливается другими неблагоприятными экологическими факторами (явление синергизма). Так, смертность от радиации у курильщиков заметно выше.

Что касается генетических последствий радиации, то они проявляются в виде хромосомных аберраций (в том числе изменения числа или структуры хромосом) и генных мутаций. Генные мутации проявляются сразу в первом поколении (доминантные мутации) или только при условии, если у обоих родителей мутантным является один и тот же ген (рецессивные мутации), что является маловероятным.

Изучение генетических последствий облучения еще более затруднено, чем в случае рака. Неизвестно, каковы генетические повреждения при облучении, проявляться они могут на протяжении многих поколений, невозможно отличить их от тех, что вызваны другими причинами.

Приходится оценивать появление наследственных дефектов у человека по результатам экспериментов на животных.

При оценке риска НКДАР использует два подхода: при одном определяют непосредственный эффект данной дозы, при другом - дозу, при которой удваивается частота появления потомков с той или иной аномалией по сравнению с нормальными радиационными условиями.

Так, при первом подходе установлено, что доза в 1 г, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных аберраций на каждый миллион живых новорожденных.

При втором подходе получены следующие результаты: хроническое облучение при мощности дозы в 1 г на одно поколение приведет к появлению около 2000 серьезных генетических заболеваний на каждый миллион живых новорожденных среди детей тех, кто подвергся такому облучению.

Оценки эти ненадежны, но необходимы. Генетические последствия облучения выражаются такими количественными параметрами, как сокращение продолжительности жизни и периода нетрудоспособности, хотя при этом признается, что эти оценки не более чем первая грубая прикидка. Так, хроническое облучение населения с мощностью дозы в 1 г на поколение сокращает период трудоспособности на 50000 лет, а продолжительность жизни - также на 50000 лет на каждый миллион живых новорожденных среди детей первого облученного поколения; при постоянном облучении многих поколений выходят на следующие оценки: соответственно 340000 лет и 286000 лет.

Существует три пути поступления радиоактивных веществ в организм: при вдыхание воздуха, загрязненного радиоактивными веществами, через зараженную пищу или воду, через кожу, а также при заражении открытых ран. Наиболее опасен первый путь, поскольку:

объем легочной вентиляции очень большой

значения коэффициента усвоения в легких более высоки.

Пылевые частицы, на которых сорбированы радиоактивные изотопы, при вдыхании воздуха через верхние дыхательные пути частично оседают в полости рта и носоглотке. Отсюда пыль поступает в пищеварительный тракт. Остальные частицы поступают в легкие. Степень задержки аэрозолей в легких зависит от дисперсионности. В легких задерживается около 20% всех частиц; при уменьшении размеров аэрозолей величина задержки увеличивается до 70%.

При всасывании радиоактивных веществ из желудочно-кишечного тракта имеет значение коэффициент резорбции, характеризующий долю вещества, попадающего из желудочно-кишечного тракта в кровь. В зависимости от природы изотопа коэффициент изменяется в широких пределах: от сотых долей процента (для циркония, ниобия), до нескольких десятков процентов (водород, щелочноземельные элементы). Резорбция через неповрежденную кожу в 200-300 раз меньше, чем через желудочно-кишечный тракт, и, как правило, не играет существенной роли.

При попадании радиоактивных веществ в организм любым путем они уже через несколько минут обнаруживаются в крови. Если поступление радиоактивных веществ было однократным, то концентрация их в крови вначале возрастает до максимума, а затем в течение 15-20 суток снижается.

Концентрации в крови долгоживущих изотопов в дальнейшем могут удерживаться практически на одном уровне в течение длительного времени вследствие обратного вымывания отложившихся веществ.

Заряженные частицы, проникающие в ткани организма - и -частицы теряют энергию вследствие электрических взаимодействий с электронами тех атомов, близ которых они проходят (Гамма-излучение и рентгеновские лучи передают свою энергию веществу несколькими способами, которые, в конечном счете, также приводят к электрическим взаимодействиям.)

Электрические взаимодействия. За время порядка десяти триллионных секунды после того, как проникающее излучение достигнет соответствующего атома в ткани организма, от этого атома отрывается электрон. Последний заряжен отрицательно, поэтому остальная часть исходного нейтрального атома становится положительно заряженной. Этот процесс называется ионизацией. Оторвавшийся электрон может далее ионизировать другие атомы.

Физико-химические изменения. И свободный электрон, и ионизированный атом обычно не могут долго пребывать в таком состоянии и в течение следующих десяти миллиардных долей секунды участвуют в сложной цепи реакций, в результате которых образуются новые молекулы, включая и такие чрезвычайно реакционно-способные, как “свободные радикалы”. Химические изменения. В течение следующих миллионных долей секунды образовавшиеся свободные радикалы реагируют как друг с другом, так и с другими молекулами и через цепочку реакций, еще не изученных до конца, могут вызвать химическую модификацию важных в биологическом отношении молекул, необходимых для нормального функционирования клетки. Биологические эффекты. Биохимические изменения могут произойти как через несколько секунд, так и через десятилетия после облучения и явиться причиной немедленной гибели клеток, или такие изменения в них могут привести к раку.