Применение ультразвука в хирургии. Ультразвук в легочной хирургии Ультразвук в физиотерапии

Сегодня использование ультразвука (УЗК) в медицине получило прочное научное обоснование и позволяет наилучшим образом решать многие вопросы диагностики и терапии.

В МВТУ имени Н. Э. Баумана и на кафедре травматологии ЦОЛИУврачей Г. А. Николаевым, В. И. Лошиловым, В. А. Поляковым и Г. Г. Чемяновым впервые в 1964 г. была начата разработка метода ультразвуковой резки костных и мягких тканей, а затем и сварка костных тканей. После экспериментальных исследований (более 500 опытов) В. А. Поляков в 1967 г. успешно применил в клинике ультразвуковую резку мягких и костных тканей, а также произвел несколько успешных операций остеосинтеза.

К настоящему времени ультразвуковой метод нашел широкое применение в ортопедии и травматологии при различных костно-пластических операциях. Советские специалисты используют ультразвук в торакальной хирургии при рассечении рубцово-склеротической ткани, декортикации и пневмолизе, а также при распиливании костной ткани. Хирургический ультразвук используется также при лечении инфицированных ран.

Представляют особый интерес экспериментальные исследования по ультразвуковой сварке культи бронха после резекции легкого, а также внедрение в арсенал хирургов гибких и длинных волноводов для интраторакальных манипуляций на трахее и бронхах (Г. А. Николаев, В. П. Борисов и др.). Ранее такие работы не проводились ни в СССР, ни за рубежом. Значительный интерес и для науки, и для практики представляют исследования по ультразвуковому соединению легочной ткани.

Заслуживают внимания и перспективные исследования по изучению местного воздействия низкочастотных ультразвуковых волн на микробактерии туберкулеза непосредственно в каверне (ультразвуковое «орошение» и санация легочных каверн).

Ультразвук и болезни легких... Лет десять назад эти физические и медицинские понятия никак не соприкасались. Сейчас ультразвук становится незаменимым диагностом и целителем большинства легочных заболеваний.

Ультразвук. Краткая характеристика . Ультразвук - упругие механические колебания среды, частота которых превышает верхний предел слышимости уха человека (около 18 кГц). Они находятся в диапазоне частот от 18 кГц до 15 МГц. Колебания эти распространяются в виде волн, которые представляют собой периодически чередующиеся области растяжения и сжатия. Скорость распространения упругой волны определяется свойствами среды и не зависит ни от частоты, ни от интенсивности ультразвука. Особенности ультразвуковых колебаний - их направленность и возможность фокусирования энергии на небольшой площади рабочего инструмента.

Основную характеристику распространяющейся упругой волны представляет расстояние, которое она проходит за один период. Эта величина - длина волны, зависящая от скорости распространения звука в материале, а также от частоты.

Звуковая волна, распространяясь в среде, несет определенную энергию, которая периодически переходит из потенциальной в кинетическую и обратно.

Для оценки энергии звукового поля определена величина, называемая интенсивностью звука. Интенсивность - количество энергии, переносимой звуковой волной за одну секунду через площадку 1 см 2 , перпендикулярно к направлению распространения.

При распространении плоских ультразвуковых волн в среде часть энергии затрачивается на преодоление необратимых потерь: (например, вязкости материала). Такой процесс носит название «поглощение ультразвука», когда энергия переходит в тепло, нагревая среду.

Если распространяющаяся волна попадает на границу раздела между двумя средами, то часть ультразвуковой энергии проходит во вторую среду, а другая - отражается обратно. Распределение энергии между прошедшей и отраженной энергией зависит от соотношения акустических сопротивлений двух сред.

Специфические свойства ультразвуковых колебаний для воздействия на биологические ткани заключаются в следующем:
- отмечается высокая интенсивность энергии с максимальными амплитудами колебаний;
- звуковое радиационное давление появляется в поле продольных звуковых волн с конечными амплитудами смещения. Давление всегда направлено от среды с большей плотностью к среде с наименьшей;
- возникает кавитация: процесс разрыва жидкости под действием растягивающихся напряжений с образованием газовых полостей;
- наблюдается нагрев тканей под действием ультразвука.

Основной параметр ультразвуковых колебаний, определяющий биологическое воздействие, - интенсивность ультразвука. Величина интенсивности определяет степень разрушения биологических структур.

Время воздействия ультразвука тоже играет немаловажную роль.

С увеличением времени воздействия свыше 10 минут при средней интенсивности ультразвук может вызвать необратимые изменения в клетках и разрушение живых тканей. Импульсивный режим действия источника колебаний позволяет удлинить время воздействия (до 20 мин) без существенных морфологических изменений в биологических тканях.

Величина поглощения ультразвуковой энергии зависит от гистологического строения тканей. Поглощение в жировых тканях, например, меньше, чем в обычных. Значительное поглощение отмечается в ателектазированных легких, а хрящи и мышцы обладают более высокими значениями коэффициента затухания, чем паренхиматозные ткани. Коэффициент поглощения ультразвуковой энергии зависит и от направления введения ультразвука по отношению к направлению коллагеновых волокон. Кость имеет максимальный коэффициент поглощения, а следовательно, при ультразвуковом распиливании в ней выделяется наибольшее количество тепла.

При высокой частоте ультразвуковых волн больше образуется тепла на поверхности раздела мягкая ткань - кость. При этом примерно 40% ультразвуковой энергии отражается в тканях.

Кавитация в мягких тканях крайне затруднена из-за большой вязкости тканевых жидкостей и большей концентрации клеток в них. Кавитация в кровеносных сосудах возникает легче, нежели в других тканях.

Для объяснения механизма действия ультразвуковых волн в последнее время появились новые гипотезы, теоретические основы которых связаны с акустическими течениями. Для врачей и биологов представляет интерес возникновение акустических течений в слое жидкости, граничащей с колеблющимся ультразвуковым инструментом. Цитологические и функциональные изменения клеток, вызываемые ультразвуковыми волнами, обусловлены возникновением микроскопических течений на границе клетка - жидкость и внутри клеток. Характер и форма микроскопических течений зависят не только от интенсивности ультразвука, но и от вязкости цитоплазмы и ряда других физических параметров такой сложной системы, как живая клетка.

При использовании ультразвуковых колебаний для воздействия на мягкие ткани и осуществления процесса их рассечения необходимо учитывать как биологические свойства самой ткани, так и физические параметры ультразвука.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани. ультразвук хирургия диагностика техника

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы -- дезинтеграторы, рабочий конец которых, помимо продольных, совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

"Аппарат для ультразвуковой терапии: обобщенная структура, применение ультразвука в хирургии"

МИНСК, 2008

Аппарат для ультразвуковой терапии.

Аппарат предназначен для лечения акушерско-гинекологических заболеваний, но применяется также в оториноларингологии, стоматологии, дерматологии и в других областях медицины.

Основные технические данные аппарата: частота ультразвуковых колебаний 2,64 МГц ±0,1%; интенсивность ультразвуковых колебаний регулируется четырьмя ступенями 0,05; 0,2; 0,5 и 1,0 Вт/см 2 ; эффективная площадь большого излучателя 2 см 2 , малого - 0,5 см 2 ; предусмотрен импульсный режим работы при длительности импульсов 2, 4 и 10 мс, частоте следования 50 Гц; питание от сети переменного тока частотой 50 Гц напряжением 220 В ±10%; потребляемая мощность не более 50 ВА; по защите от поражения электрическим током аппарат выполнен по классу I; габаритные размеры 342×274×142 мм; масса (с комплектом) не более 10 кг.

Структурная схема аппарата УЗТ представлена на рисунке 1.

Рисунок 1 – Структурная схема аппарата УЗТ

Генератор высокочастотный создает немодулированные электрические колебания с частотой 2,64 МГц. Усиление мощности этих колебаний происходит в выходном усилителе, к которому подключается один из ультразвуковых излучателей, преобразующий электрические колебания в механические. Модулятор предназначен для получения импульсного режима при трех длительностях импульсов - 2, 4 и 10 мс и постоянной частоте следования - 50 Гц. Блок питания обеспечивает питание постоянным напряжением цепей модулятора и генератора.

Принципиальная электрическая схема аппарата приведена на рисунке 2.

Рисунок 2 – Принципиальная электрическая схема аппарата УЗТ-31

Блоквысокочастотногогенератора (рисунок 3) включает в себя автогенератор, буферный каскад и усилитель.

Автогенератор (транзистор VT 1 ) собран по осцилляторной схеме с кварцевой стабилизацией. С выхода автогенератора высокочастотное напряжение подается на буферный каскад, представляющий собой эмиттерный повторитель (транзистор VT 3 ). В эмиттерной цепи повторителя включены контакты кнопочного переключателя S 1 , коммутирующие делитель на резисторе 9 и потенциометрах 10 - 13 . Кнопки переключателя выведены на панель управления аппарата ("Интенсивность, Вт/см 2 "). При нажатии одной из кнопок в эмиттерную цепь включается соответствующий потенциометр, с движка которого напряжение через разделительный конденсатор 11 подается на усилитель. С помощью потенциометров 10 - 13 производится регулировка интенсивности на каждой ступени при производстве аппарата или его ремонте.

Усилитель (транзистор VT 4 ) имеет на выходе четырехполюсник (конденсаторы 13 - 17 и катушка индуктивности 3 ), согласующий выходное сопротивление транзистора VT 4 со входным сопротивлением выходного усилителя.

В блоке генератора находится также оконечный каскад (транзистор VT 2 ) импульсного модулятора. Каскад работает в ключевом режиме по параллельной схеме. При подаче на его вход прямоугольного импульса (через контакты 11 - 12 вилки X 1 ) транзистор VT 2 открывается, шунтируя вход буферного усилителя и создавая тем самым паузу в генерации ультразвуковых колебаний.

Рисунок 3 – Принципиальная электрическая схема высокочастотного генератора аппарата УЗТ-31


Обобщенная структура аппарата для ультразвуковой терапии.

Для проведения УЗ-процедуры очевидными являются наличие высокочастотного генератора ч пьезоэлектрических преобразователей, формирующих соответствующие ультразвуковые волны.

Проведение УЗ-процедуры возможно двумя основными способами:

1. При непосредственном контакте УЗ-излучателя с облучаемымучастком тела.

2. Косвенным контактом через иммерсионную жидкость, осуществляемым с помощью водяной панны или водяной подушки (пузыря из тонкой резины, наполненного водой).

При использовании первого способа необходимо исключить наличие воздушной прослойки между излучателем и поверхностью тела, поскольку даже тончайший слой воздуха приведет, практически, к полному отражению УЗ-волны от поверхности тела. Поэтому, перед сеансом поверхность кожи облучаемого участка тщательно смазывается вазелиновым маслом или специальной смазкой на основе парафинов.

При использовании косвенного контакта может использоваться как непрерывный, так и импульсный режим излучения, при неподвижном и подвижном излучателях.

При использовании водяной ванны можно производить облучение как прямым, так и наклонным лучом, что удобно при облучении суставов и участков тела с неровной поверхностью.

Аппараты УЗ-терапии могут быть стационарными и портативными. универсальными и специализированными. Типовая структура терапевтического ультразвукового аппарата представлена на рисунке 4.

Автогенератор АГ генерирует в непрерывном режиме колебания УЗ-частоты. Через модулятор М (управляемый ключ) У3-колебания передаются на предварительный усилитель ПУ со ступенчатой регулировкой коэффициента усиления и далее. через выходной усилитель, на излучатель ИЗ и индикатор ИНД, показывающий наличие переменного сигнала УЗ-частоты на выходе усилителя. Модулятор управляется генератором импульсов регулируемой длительности ГИ. Все регулировки осуществляются с помощью пульта управления снабженного процедурными часами ПЧиПУ, которые отключают блок питания БП по истечении установленного времени длительности процедуры.


Рисунок 4 – Структурная схема аппарата ультразвуковой терапии

Перед сеансом УЗ-терапии производят проверку исправности аппарата. Простейший способ проверки наличия генерации ультразвука состоит в том. что излучатель окунают в стакан с водой и. при наличии колебаний, наблюдают эффект дегазации (выделения пузырьков воздуха). С повышением интенсивности излучения газовыделение возрастает.

Периодически проводят проверку градуировки шкалы интенсивности генерируемого ультразвука. Для этой цели Используются специальные измерители мощности ультразвука, например, типа ИМУ-2 (3).

Для предохранения рук оператора от воздействия ультразвука, он должен работать в тонких нитяных перчатках, поверх которых надеты резиновые. Сохраняемый пол слоем резины слой воздуха отражает УЗ-колебания. предохраняя руки от воздействия ультразвука.

В таблице 1 приведены некоторые основные характеристики отечественных терапевтических УЗ-аппаратов.


Таблица 1 Характеристики отечественных терапевтических УЗ – аппаратов.

Интересным представляется воздействие ультразвуковыми волнами на биологически активные точки (БАТ) с целью достижения определенных терапевтических эффектов, называемое фонотерапией. Фонотерапия осуществляется с помощью терапевтических УЗ-аппаратов, позволяющих генерировать ультразвук малой интенсивности (0,05Вт/см в кв) и снабженных излучателями с малой площадью активной, поверхности (от 0,2 до 1см в кв), например, "ЛОР-3", "УЗТ-102", "УЗ-Т10" и др.

Применение ультразвука в хирургии.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Метод ультразвуковой резки мягких тканей основан на том, что на лезвие режущего инструмента, которому хирургом сообщается поступательное движение, накладываются продольные ультразвуковые колебания с частотой, лежащей в пределах 22 - 44кГц. с амплитудой не более 45мкм. Под действием УЗ-колебаннй. налагаемых на инструмент, скорость относительных продольных перемещении увеличивается, относительно поступательного перемещения лезвия, в несколько раз. При этом, за счет разрушении под воздействием кавитации клеточной структуры прилегающих к лезвия слоев ткани, сухое трение переходит в полусухое или даже жидкостное. Это приводит к существенному уменьшению как нормального, так и тангенциального усилия резания. Ультразвуковые колебания возбуждаются магнитострикторрм и с помощью концентратора передаются к режущему инструменту. Магнитостриктор изготовляют либо из ферритового броневого цилиндрического магнптопровода, в полость которого закладывается обмотка, либо набирается из Ш - образных пластин из никелевого сплава, на центральный стержень которых наматывается обмотка. При перемагннчивании материала возникает явление магнитострикции, вследствие которого продольные размеры стержней колеблются с частотой перемагничивающего тока. Чтобы избежать удвоения частоты механических колебаний сердечник магнитостриктора подмагничивается постоянным током практически до насыщения.

Ультразвук, применяемый в медицине, может быть условно разделен на ультразвук низких и высоких интенсивностей. Основная задача применения ультразвука низких интенсивностей (0,125 - 3,0 Вт/см2) - неповреждающий нагрев или какие-либо нетепловые эффекты, а также стимуляция и ускорение нормальных физиологических реакций при лечении повреждений. При более высоких интенсивностях (> 5 Вт/см2) основная цель - вызвать управляемое избирательное разрушение в тканях. Первое направление включает в себя большинство применений ультразвука в физиотерапии и некоторые виды терапии рака, второе - ультразвуковую хирургию.

Применение ультразвука в хирургии.

Существуют две основные области применения ультразвука в хирургии. В первой из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях, а во второй механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников.

Хирургия с помощью фокусированного ультразвука.

Хирургическая техника должна обеспечивать управляемость разрушения тканей, воздействовать только на четко ограниченную область, быть быстродействующей, вызывать минимальные потери крови. Мощный фокусированный ультразвук обладает большинством из этих качеств. Возможность использования фокусированного ультразвука для создания зон поражения в глубине органа без разрушения вышележащих тканей изучено в основном в операциях на мозге. Позже операции проводились на печени, спинном мозге, почках и глазе.

Применение ультразвука в физиотерапии

Ускорение регенерации тканей.

Одно из наиболее распространенных применений ультразвука в физиотерапии - это ускорение регенерации тканей и заживления ран. Восстановление тканей можно описать с помощью трех перекрывающихся фаз. В течение воспалительной фазы фагоцитарная активность макрофагов и полиморфнонуклеарных лейкоцитов ведет к удалению клеточных фрагментов и патогенных частиц. Переработка этого материала происходит главным образом при помощи лизосомальных ферментов макрофагов. Известно, что ультразвук терапевтических интенсивностей может вызвать изменения в лизосомальных мембранах, тем самым ускоряя прохождение этой фазы. Вторая фаза в залечивании ран - пролиферация или фаза разрастания. Клетки мигрируют в область поражения и начинают делиться. Фибробласты начинают синтезировать коллаген. Интенсивность заживления начинает увеличиваться, и специальные клетки, миофибробласты, заставляют рану стягиваться. Показано, что ультразвук значительно ускоряет синтез коллагена фибробластами как in vitro, так и in vivo. Если диплоидные фибробласты человека облучить ультразвуком частотой 3 МГц и интенсивностью 0,5 Вт/см2 in vitro, то количество синтезированного белка увеличится. Исследование таких клеток в электронном микроскопе показало, что по сравнению с контрольными клетками в них содержится больше свободных рибосом, шероховатой эндоплазматической сети. Третья фаза - восстановление. Эластичность нормальной соединительной ткани обусловлена упорядоченной структурой коллагеновой сетки, позволяющей ткани напрягаться и расслабляться без особых деформаций. В рубцовой ткани волокна часто располагаются нерегулярно и запутанно, что не позволяет ей растягиваться без разрывов. Рубцовая ткань, формировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

При облучении хронических варикозных язв на ногах ультразвуком частотой 3 МГц и интенсивностью 1 Вт/см2 в импульсном режиме 2 мс: 8 мс были получены следующие результаты: после 12 сеансов лечения средняя площадь язв составляла примерно 66,4% от их первоначальной площади, в то время как площадь контрольных язв уменьшилась всего до 91,6%. Ультразвук может также способствовать приживлению пересаженных лоскутов кожи на края трофических язв.

Ускорение рассасывания отеков.

Ультразвук может ускорить рассасывание отеков, вызванных повреждениями мягких тканей, что скорее всего обусловлено увеличением кровотока или местными изменениями в тканях под действием акустических микропотоков.

Заживление переломов.

При экспериментальном исследовании переломов малой берцовой кости у крыс было обнаружено, что ультразвуковое облучение во время воспалительной и ранней пролиферативной фаз ускоряет и улучшает выздоровление. Костная мозоль у таких животных содержала больше костной ткани и меньше хрящей. Однако в поздней пролиферативной фазе приводило к негативным эффектам - усиливался рост хрящей и задерживалось образование костной ткани.

Светолечение

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

Инфракрасное излучение

Механизм действия :

  1. местная гипертермия;
  2. спазм сосудов, сменяющийся их расширением, усиление кровотока;
  3. увеличение проницаемости стенок капилляров;
  4. усиление тканевого обмена, активация окислительно-восстановительных процессов;
  5. высвобождение биологически-активных веществ, в том числе гистаминоподобных, что также приводит к увеличению проницаемости капилляров;
  6. противовоспалительный эффект;
  7. ускорение обратного развития воспалительных процессов;
  8. ускорение тканевой регенерации;
  9. увеличение местной сопротивляемости тканей к инфекции;
  10. рефлекторное снижение тонуса поперечно-полосатой и гладкой мускулатуры - уменьшение болей, связанных с их спазмом.

Показания :

  1. не гнойные хронические и подострые местные воспалительные процессы;
  2. ожоги;
  3. обморожения;
  4. плохо заживающие раны и язвы;
  5. спаечный процесс в брюшной полости;
  6. миозиты;
  7. невралгии;
  8. последствия травм опорно-двигательного аппарата.

Противопоказания :

  1. злокачественные новообразования;
  2. тенденция к кровотечениям;
  3. острые гнойно-воспалительные заболевания.

Ультрафиолетовое излучение

Механизм действия :

  1. нервно-рефлекторный: лучистая энергия как раздражитель действует через кожу с ее мощным рецепторным аппаратом на центральную нервную систему, а через нее на все органы и ткани организма человека;
  2. часть поглощенной лучистой энергии превращается в теплоту, под ее влияние в тканях происходит ускорение физико-химических процессов, что сказывается на повышении тканевого и общего обмена;
  3. фотоэлектрический эффект - отщепленные при этом электроны и появившиеся положительно заряженные ионы влекут за собой изменения "ионной конъюнктуры" в клетках и тканях, а следовательно и изменение электрических свойств коллоидов; в результате этого увеличивается проницаемость клеточных мембран и увеличивается обмен между клеткой и окружающей средой;
  4. возникновение вторичного электромагнитного излучения в тканях;
  5. бактерицидное действие света, зависящее от спектрального состава, интенсивности излучения; бактерицидное действие складывается из непосредственного действия лучистой энергии на бактерий и повышение реактивности организма (образование БАВ, повышение иммунологических свойств крови);
  6. прямое разрушение токсинов: дифтерийного и столбнячного;
  7. при воздействии ультрафиолетового излучения появляется пигментация кожи, повышающая устойчивость кожи к повторным облучениям;
  8. изменение физико-химических свойств кожи (снижение рН за счет снижения уровня катионов и повышения уровня анионов).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ГБОУ ВПО «ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ»

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАФЕДРА МЕДБИОФИЗИКИ, ИНФОРМАТИКИ, ЭКОНОМИКИ

РЕФЕРАТ

ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ УЛЬТРАЗВУКА В ХИРУРГИИ

Выполнила:

студентка 1 курса 103 гр. пед. ф-та Фазуллина А.И.

Проверил:

ст. преподаватель Рябчикова М.С.

Введение

Основные области применения ультразвука в хирургии

Ультразвуковая диагностика

Ультразвуковые инструменты

Ультразвуковой комплекс для лапароскопии

Бактерицидные свойства ультразвука

Заключение

Приложение

Введение

Цель работы : выявить основные области применения ультразвука в оперативной хирургии.

Задачи :

раскрыть понятия ультразвук, ультразвуковая диагностика;

установить физические основы применения ультразвука;

роль ультразвука в хирургии.

Актуальность темы : сегодня ультразвук с успехом применяется в ряде областей медицины и в первую очередь для лечебных целей в терапии, в диагностике различных заболеваний, в хирургической практике. С помощью ультразвука стерилизуют жидкости, моют и дезинфицируют хирургические инструменты, руки хирурга, производят диспергирование и ингаляцию. Использование ультразвука в медицине основано на физических явлениях, происходящих в биологических тканях: это различное поглощение ультразвука тканями, отличающимися внутренним строением, отражение ультразвуковых колебаний при переходе сред разной плотности, образование под действием ультразвука тепла в тканях (возбуждение в них колебаний, развитие различных потоков биологических жидкостей и т.д.).

Ультразвуком называются звуковые колебания, лежащие выше порога восприятия органа слуха человека. Пьезоэффект, благодаря которому получают ультразвуковые колебания, был открыт в 1881 году братьями П. Кюри и Ж.-П. Кюри. Свое применение он нашел во время первой мировой войны, когда К.В. Шиловский и П.Ланжевен разработали сонар, использовавшийся для навигации судов, определения расстояния для цели и поиска подводных лодок. В 1929 году С.Я. Соколов применил ультразвук для неразрушающего контроля в металлургии (дефектоскопия). Этот крупнейший советский физик-акустик явился родоначальником ультразвуковой интроскопии и автором наиболее часто используемых и совершенно различных по своей сути методов современного звуковидения.

Попытки использования ультразвука в целях медицинской диагностики привели к появлению в 1937 году одномерной эхоэнцефалографии. Однако лишь в начале пятидесятых годов удалось получить ультразвуковое изображение внутренних органов и тканей человека. С этого момента ультразвуковая диагностика стала широко применяться в лучевой диагностике многих заболеваний и повреждений внутренних органов.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани. ультразвук хирургия диагностика техника

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы -- дезинтеграторы, рабочий конец которых, помимо продольных, совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.

Применительно к операциям, проводимым на брюшной полости пациента эффективность достигается благодаря применению методов лапароскопической (от греч. lapara -- пах, чрево и skopeo -- смотрю) хирургии. Для лапароскопических операций используются лапароскоп и специальные инструменты, которые вводятся по троакарам через отдельные миниатюрные проколы (не более 1 см) в брюшной полости. Небольшие проколы, производимые при лапароскопических хирургических вмешательствах, практически не травмируют мышечную ткань.

Одной из основных и наиболее важной частью ультразвукового комплекса для лапароскопии является ультразвуковая колебательная система (УЗКС), преобразующая электрические колебания ультразвуковой частоты в механические. От того, насколько эффективно она осуществляет свою функцию, зависят такие эксплуатационные параметры аппарата как: максимальная амплитуда ультразвуковых колебаний, допустимое время непрерывной работы, разогрев колебательной системы и рабочих инструментов.

Колебательная система, как правило, строится по полуволновой конструктивной схеме, сочетающей в себе электроакустический преобразователь (пьезоэлектрический) и концентратор.

Для осуществления ультразвукового резания и коагуляции необходимым и достаточным условием является достижение амплитуды колебаний порядка 150 мкм. К сожалению, при таком значении амплитуды колебаний велика вероятность возникновения изгибных колебаний. При этом наблюдается разрушение рабочего инструмента.

Для выполнения различного рода лапароскопических операций применяется несколько сменных рабочих инструментов (до 10 шт.), которые отличаются длиной, диаметром и формой окончаний. Длина всех сменных рабочих инструментов выбиралась из условий обеспечения кратности половине длины волны продольных ультразвуковых колебаний в материале инструмента.

Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025...0,5%) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента

На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают на несколько секунд в сосуд с любым дезинфицирующим раствором, например, перикиси водорода.

Заключение

В настоящее время ультразвуковой метод нашел широкое диагностическое применение и стал неотъемлемой частью клинического обследования больных. По абсолютному числу ультразвуковые исследования в плотную приблизились к рентгенологическим. Одновременно существенно расширились и границы использования эхографии. Во- первых, она стала применятся для исследования тех объектов, которые ранее считались недоступными для ультразвуковой оценки (легкие, желудок, кишечник, скелет), так что в настоящее время практически все органы и анатомические структуры могут быть изучены сонографически. Во-вторых, в практику вошли интракорпоральные исследования, осуществляемые введением специальных микродатчиков в различные полости организма через естественные отверстия, пункционным путем в сосуды и сердце либо через операционные раны. Этим было достигнуто значительное повышение точности ультразвуковой диагностики. В-третьих, появились новые направления использования ультразвукового метода. Наряду с обычными плановыми исследованиями, он широко применяется для целей неотложной диагностики, мониторинга, скрининга, для контроля за выполнением диагностических и лечебных пункций.

Приложение

Ультразвук - звуковые волны имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц.

Ультразвуковая диагностика - метод исследования человеческих органов, основанный на способности ультразвуковых волн проникать сквозь ткани, показывая картину состояния организма на экране.

Размещено на Allbest.ru

...

Подобные документы

    Применение ультразвука с лечебной целью. Механическое, термическое, физическое воздействие ультразвука. Методы ультразвуковой терапии: контактный, ультрафонофорез, рефлексотерапия, интракорпоральный, эндоскопический. Аппараты для ультразвуковой терапии.

    презентация , добавлен 05.02.2015

    Способы получения и свойства ультразвука. Изображение внутренних органов человека с помощью ультразвуковых волн. Ультразвуковые генераторы (медицинский, школьный). Свойство отражения ультразвуковой волны в медицинской ультразвуковой диагностике.

    контрольная работа , добавлен 03.02.2011

    Определение и характеристика ультразвука, его основные источники. Действие ультразвука на биологические объекты. Применение ультразвука в диагностике и терапии. Частотная граница между звуковыми и ультразвуковыми волнами. Ультразвуковой свисток Гальтона.

    презентация , добавлен 28.04.2016

    Физические характеристики звука. Понятие ультразвука и принцип действия электромеханических излучателей. Медико-биологичесике приложения ультразвука. Методы диагностики и исследования: двумерная и доплеровская эхоскопия, визуализация на гармониках.

    презентация , добавлен 23.02.2013

    Биологические и физические характеристики ультразвука. Механизмы физиологического и лечебного действия (механический, тепловой и физико-химический факторы). Аппаратура, методика и техника ультразвуковой терапии. Показания и противопоказания к лечению.

    реферат , добавлен 27.04.2009

    Адаптация организма ребенка к условиям внеутробной жизни. Современные методы ультразвуковой диагностики. Современные ультразвуковые приборы. Применение ультразвуковой диагностики. Методика проведения нейросонографии. Дисплазия тазобедренного сустава.

    презентация , добавлен 18.09.2013

    История сердечно-сосудистой хирургии как отрасли хирургии и медицинской специальности, ее подходы к решению проблем в период первых открытий. Зарождение кардиохирургии как хирургического направления в России. Открытия в области хирургии сердца и сосудов.

    реферат , добавлен 22.12.2013

    Характеристика и назначение ультразвуковой терапии, ее физическое обоснование и специальная аппаратура. Методика и техника проведения процедур и механизм действия фактора на организм. Показание и противопоказания к использованию ультразвуковой терапии.

    реферат , добавлен 23.11.2009

    Статистические данные заболеваемости остеопорозом. Опорно-двигательный аппарат человека: остеология, классификация костей. Исследование синовиальной жидкости. Артрография и трепанобиопсия. Радионуклидная диагностика. Биологическое действие ультразвука.

    курсовая работа , добавлен 16.12.2012

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.