Эксперименты волосковых клеток уха. Средство для лечения нейросенсорной потери слуха (варианты)

Каждая волосковая клетка имеет 50-70 небольших ресничек, называемых стереоцилиями, и одну большую ресничку - киноцилию. Киноцилия всегда расположена с одной стороны клетки, а стереоцилии постепенно становятся короче по направлению к другой стороне клетки. Мельчайшие нитевидные сцепки, почти невидимые даже в электронный микроскоп, связывают верхушку каждой стереоцилии с соседней, более длинной стереоцилией и в итоге - с киноцилией. Благодаря этим сцепкам при отклонении стереоцилии и киноцилии в сторону киноцилии нитевидные сцепки тянут стереоцилии одну за другой, оттягивая их наружу от тела клетки.

Это открывает несколько сотен заполненных жидкостью каналов в мембране нервной клетки вокруг оснований стереоцилии. В результате создается возможность проведения через мембрану большого количества положительных ионов, которые текут в клетку из окружающей эндолимфатической жидкости, вызывая деполяризацию мембраны рецептора. Наоборот, отклонение пучка стереоцилии в противоположном направлении (от киноцилии) уменьшает натяжение сцепок; это закрывает ионные каналы, что ведет к гиперполяризации рецептора.

В условиях покоя по нервным волокнам , идущим от волосковых клеток, постоянно проводятся импульсы с частотой примерно 100 имп/сек. Когда стереоцилии отклоняются в направлении киноцилии, поток импульсов усиливается до нескольких сотен в секунду; наоборот, отклонение ресничек в направлении от киноцилии уменьшает поток импульсов, часто выключая его полностью. Следовательно, когда ориентация головы в пространстве изменяется и вес статоко-ний отклоняет реснички, соответствующие сигналы передаются к головному мозгу для регуляции равновесия.

В каждой макуле каждая из волосковых клеток ориентирована в определенном направлении, поэтому одни из этих клеток стимулируются при наклоне головы вперед, другие - при отклонении головы назад, третьи - при отклонении в одну сторону и т.д. Следовательно, для каждой ориентации головы в гравитационном поле в нервных волокнах, идущих от макулы, возникает разный «рисунок» возбуждения. Именно этот «рисунок» информирует мозг об ориентации головы в пространстве.

Полукружные каналы . Три полукружных канала в каждом вестибулярном аппарате, известные как передний, задний и латеральный (горизонтальный) полукружные каналы, расположены под прямым углом друг к другу так, что представляют все три плоскости пространства. Когда голова наклонена вперед приблизительно на 30°, латеральные полукружные каналы лежат примерно горизонтально по отношению к поверхности Земли, передние каналы - в вертикальных плоскостях, которые проецируются вперед и на 45° наружу, тогда как задние каналы расположены в вертикальных плоскостях, направленных назад и на 45° наружу.

Каждый полукружный канал имеет расширение на одном из его концов, которое называют ампулой; и каналы, и ампула наполнены жидкостью, называемой эндолимфой. Ток этой жидкости через один из каналов и его ампулу возбуждает сенсорный орган ампулы следующим образом. На рисунке виден небольшой гребешок, имеющийся в каждой ампуле, который называют ампулярным гребешком. Сверху этот гребешок покрыт рыхлой студенистой тканевой массой, называемой куполом (купулой).

Когда голова человека начинает поворачиваться в любом направлении, жидкость в одном или более полукружных каналов по инерции остается неподвижной, тогда как сами полукружные каналы поворачиваются вместе с головой. При этом жидкость течет от протока и через ампулу, сгибая купол в одну сторону. Вращение головы в противоположном направлении вызывает отклонение купола в другую сторону.

Внутрь купола погружены сотни ресничек волосковых клеток, расположенных на ампулярном гребешке. Киноцилии всех волосковых клеток в куполе ориентированы в одном направлении, и отклонение купола в этом направлении вызывает деполяризацию волосковых клеток, а отклонение его в противоположном направлении гиперполяризует клетки. От волосковых клеток соответствующие сигналы посылаются по вестибулярному нерву, информируя центральную нервную систему об изменении вращения головы и скорости изменения в каждой из трех плоскостей пространства.

Вернуться в оглавление раздела " "

Регистрация двух сенсорных модальностей - слуха и равновесия - происходит в ухе. Оба органа (слуха и равновесия) формируют в толще височной кости преддверие (vestibulum) и улитку (cochlea) - преддверно-улитковый орган. Рецепторные (волосковые) клетки (рис. 11-1) органа слуха расположены в перепончатом канале улитки (кортиев орган), а органа равновесия (вестибулярный аппарат) в структурах преддверия - полукружных каналах, маточке (utriculus) и мешочке (sacculus).

Рис. 11-1. Преддверно-улитковый орган и рецепторные области (справа вверху, зачернены) органов слуха и равновесия. Движение перилимфы от овального к круглому окну обозначены стрелками

СЛУХ

ОРГАН СЛУХА анатомически состоит из наружного, среднего и внутреннего уха.

Наружное ухо представлено ушной раковиной и наружным слуховым проходом.

Среднее ухо. Его полость сообщается с носоглоткой при помощи евстахиевой (слуховой) трубы и отделена от наружного слухового прохода барабанной перепонкой диаметром 9 мм, а от преддверия и барабанной лестницы улитки - овальным и круглым окнами соответственно. Барабанная перепонка передаёт звуковые колебания на три маленькие взаимосвязанные слуховые косточки: молоточек прикреплён к барабанной перепонке, а стремечко - к овальному окну. Эти косточки вибрируют в унисон и усиливают звук в двадцать раз. Слуховая труба поддерживает давление воздуха в полости среднего уха на уровне атмосферного.

Внутреннее ухо. Полость преддверия, барабанная и вестибулярная лестницы улитки (рис. 11-2) заполнены перилимфой, а находящиеся в перилимфе полукружные каналы, маточка, мешочек и улитковый проток (перепончатый канал улитки) - эндолимфой. Между эндолимфой и перилимфой существует электрический потенциал - около +80 мВ (внутриулитковый, или эндокохлеарный потенциал).

Эндолимфа - вязкая жидкость, заполняет перепончатый канал улитки и соединяется через специальный канал (ductus reuniens) с эндолимфой вестибулярного аппарата. Концентрация K+ в эндолимфе в 100 раз больше, чем в спинномозговой жидкости (ликворе) и перилимфе; концентрация Na+ в эндолимфе в 10 раз меньше, чем в перилимфе.

Перилимфа по химическому составу близка к плазме крови и ликвору и занимает промежуточное положение между ними по содержанию белка.

Эндокохлеарный потенциал. Перепончатый канал улитки заряжен положительно (+60-+80 мВ) относительно двух других лестниц. Источник этого (эндокохлеарного) потенциала - сосудистая полоска. Волосковые клетки поляризованы эндокохлеарным потенциалом до критического уровня, что повышает их чувствительность к механическому воздействию.

Улигка и кортиев орган

Улитка - спирально закрученный костный канал - образует 2,5 завитка длиной около 35 мм. Базилярная (основная) и вестибулярная мембраны, расположенные внутри канала улитки, делят

Рис. 11-2. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками

Полость канала на три части: барабанная лестница (scala tympani), вестибулярная лестница (scala vestibuli) и перепончатый канал улитки (scala media, средняя лестница, улитковый ход). Эндолимфа заполняет перепончатый канал улитки, а перилимфа - вестибулярную и барабанную лестницы. В перепончатом канале улитки на базилярной мембране расположен рецепторный аппарат улитки - кортиев (спиральный) орган. Кортиев орган (рис. 11-2 и 11-3) содержит несколько рядов клеток, поддерживающих и волосковых. Все клетки прикреплены к базилярной мембране, волосковые клетки своей свободной поверхностью связаны с покровной мембраной.

Рис. 11-3. Волосковые рецепторные клетки кортиева органа

Волосковые клетки - рецепторные клетки органа Корти. Они образуют синаптические контакты с периферическими отростками чувствительных нейронов спирального ганглия. Различают внутренние и наружные волосковые клетки, разделённые свободным от клеток пространством (туннель).

Внутренние волосковые клетки образуют один ряд. На их свободной поверхности находится 30-60 неподвижных микроотростков - стереоцилий, проходящих через покровную мембрану. Стереоцилии расположены полукругом (или в виде буквы V), открытым в сторону наружных структур кортиева органа. Общее количество клеток около 3500, они образуют примерно 95% синапсов с отростками чувствительных нейронов спирального ганглия.

Наружные волосковые клетки расположены в 3-5 рядов и также имеют стереоцилии. Их число достигает 12 тыс., но все вместе они образуют не более 5% синапсов с афферентными волокнами. Однако если наружные клетки повреждены, а внутренние клетки интактны, всё равно происходит заметная потеря слуха. Возможно, наружные волосковые клетки как-то контролируют чувствительность внутренних волосковых клеток для различных звуковых уровней.

Базилярная мембрана, разделяющая среднюю и барабанную лестницы, содержит до 30 тыс. базилярных волокон, идущих от костного стержня улитки (modiolus) по направлению к её наружной стенке. Базилярные волокна - тугие, эластичные, тростниковоподобные - прикреплены к стержню улитки только на одном конце. В результате базилярные волокна могут гармонично вибрировать. Длина базилярных волокон увеличивается от основания к верхушке улитки - геликотреме. В области овального и круглого окон их длина составляет около 0,04 мм, в области геликотремы они длиннее в 12 раз. Диаметр базилярных волокон уменьшается от основания к верхушке улитки примерно в 100 раз. В итоге короткие базилярные волокна возле овального окна вибрируют лучшим образом на высокие частоты, в то время как длинные волокна вблизи геликотремы лучше вибрируют на низкие частоты (рис. 11-4). Следовательно, высокочастотный резонанс базилярной мембраны наблюдается возле основания, где звуковые волны входят в улитку через овальное окно, а низкочастотный резонанс возникает возле геликотремы.

Проведение звука к улитке

Цепочка передачи звукового давления вьглядит следующим образом: барабанная перепонка - молоточек - наковальня - стремя - мембрана овального окна - перилимфа - базилярная и текториальная мембраны - мембрана круглого окна (см. рис. 11-1). При смещении стремени перилимфа перемещается по вестибулярной лестнице и затем через геликотрему по барабанной лестнице к круглому окну. Жидкость, сдвинутая смещением мембраны овального окна, создаёт избыточное давление в вестибулярном канале. Под действием этого давления базилярная мембрана смещается в сторону барабанной лестницы. Колебательная реакция в виде волны распространяется от базилярной мембраны к геликотреме. Смещение текториальной мембраны относительно волосковых клеток при действии звука вызывает их возбуждение. Возникающая электрическая реакция (микрофонный эффект) повторяет форму звукового сигнала.

Движение звуковых волн в улитке

Когда подошва стремени движется внутрь против овального окна, круглое окно выпячивается наружу, потому что улитка со всех сторон окружена костной тканью. Начальный эффект звуковой волны, входящей в овальное окно, проявляется в прогибании базилярной мембраны в области основания улитки в направлении круглого

Рис. 11-4. Характер волн вдоль базилярной мембраны. На А, Б и В изображены вестибулярная (сверху) и барабанная лестницы (снизу) в направлении от овального (слева вверху) через геликотрему (справа) к круглому (слева внизу) окну; базилярная мембрана на А-Г - разделяющая названные лестницы горизонтальная линия. Средняя лестница в модели не учтена. Слева: движение волн высоко- (А), средне- (Б) и низкочастотных (В) звуков вдоль базилярной мембраны. Справа: корреляция между частотой звука и амплитудой колебаний базилярной мембраны в зависимости от расстоянием от основания улитки

окна. Однако эластическое напряжение базилярных волокон со- здаёт волну жидкости, которая пробегает вдоль базилярной мембраны в направлении геликотремы (рис. 11-4).

Каждая волна сначала относительно слаба, но становится более сильной, когда достигает той части базилярной мембраны, где собственный резонанс мембраны становится равным частоте звуковой волны. В этой точке базилярная мембрана может свободно вибрировать вперёд и назад, т.е. энергия звуковой волны рассеивается, волна прерывается в этой точке и теряет способность продвигаться вдоль базилярной мембраны. Таким образом, звуковая волна высокой частоты проходит короткое расстояние вдоль базилярной мембраны, прежде чем она достигнет своей резонансной точки и исчезнет; звуковые волны средней частоты проходят примерно половину пути и затем прекращаются; наконец, звуковые волны очень низкой частоты проходят вдоль мембраны почти до геликотремы.

Активация волосковых клеток

Неподвижные и упругие стереоцилии направлены кверху от апикальной поверхности волосковых клеток и проникают в покровную мембрану (рис. 11-3). В то же время базальная часть волосковых рецепторных клеток фиксирована к содержащим базилярные волокна

мембране. Волосковые клетки возбуждаются, как только базилярная мембрана начинает вибрировать вместе с прикреплёнными к ней клетками и покровной мембраной. И это возбуждение волосковых клеток (генерация рецепторного потенциала) начинается в стереоцилиях.

Рецепторный потенциал. Возникшее натяжение стереоцилий вызывает механические преобразования, открывающие от 200 до 300 катионных каналов. Ионы K+ из эндолимфы поступают внутрь стереоцилии, вызывая деполяризацию мембраны волосковой клетки. В синапсах между рецепторной клеткой и афферентным нервным окончанием выделяется быстродействующий нейромедиатор - глутамат, происходит его взаимодействие с глутаматными рецепторами, деполяризация постсинаптической мембраны и генерация ПД.

Дирекциональная чувствительность. Когда базилярные волокна изгибаются в направлении вестибулярной лестницы, волосковые клетки деполяризуются; но при движении базилярной мембраны в противоположном направлении они гиперполяризуются (такая же дирекциональная чувствительность, определяющая электрический ответ рецепторной клетки, характерна для волосковых клеток органа равновесия, см. рис. 11-7А).

Детектирование характеристик звука

Частота звуковой волны жёстко «привязана» к конкретному участку базилярной мембраны (см. рис. 11-4). Более того, существует пространственная организация нервных волокон на протяжении всего слухового пути - от улитки до коры больших полушарий. Регистрация сигналов в слуховом тракте мозгового ствола и в слуховом поле коры больших полушарий показывает, что имеются специальные нейроны мозга, возбуждаемые конкретными звуковыми частотами. Следовательно, главным методом, используемым нервной системой для определения звуковых частот, является установление того участка базилярной мембраны, который наиболее стимулирован, - так называемый «принцип места».

Громкость. Слуховая система использует для определения громкости несколько механизмов.

❖ Громкий звук повышает амплитуду колебаний базилярной мембраны, что увеличивает количество возбуждённых волосковых клеток, а это приводит к пространственной суммации импульсов и передаче возбуждения по многим нервным волокнам.

❖ Наружные волосковые клетки не возбуждаются до тех пор, пока вибрация базилярной мембраны не достигнет высокой интен-

сивности. Стимуляция этих клеток может оцениваться нервной системой как показатель действительно громкого звука. ❖ Оценка громкости. Между физической силой звука и кажущейся его громкостью нет прямой пропорциональной зависимости, т.е. ощущение увеличения громкости звука не следует строго параллельно возрастанию силы звука (уровню звуковой мощности). Для оценки уровня звуковой мощности используют логарифмический показатель реальной силы звука: 10-кратное увеличение энергии звука - 1 бел (Б). 0,1 Б называется децибел (дБ) 1 дБ - увеличение звуковой энергии в 1,26 раза - интенсивность звука по отношению к пороговой (2х10 -5 дин/см 2) (1 дин = 10 -5 Н). При обычном восприятии звука во время общения человек может различать изменения интенсивности звука в 1 дБ.

Слуховые пути и центры

На рис. 11-5А показана упрощенная схема основных слуховых путей. Афферентные нервные волокна от улитки входят в спиральный ганглий и от него поступают в дорсальные (задние) и вентральные (передние) улитковые ядра, расположенные в верхней части продолговатого мозга. Здесь восходящие нервные волокна образуют синапсы с нейронами второго порядка, аксоны которых

Рис. 11-5. А. Основные слуховые пути (вид на ствол мозга сзади, мозжечок и кора больших полушарий удалены). Б. Слуховая кора

частью переходят на противоположную сторону к ядрам верхней оливы, а частью оканчиваются на ядрах верхней оливы этой же стороны. От ядер верхней оливы слуховые пути поднимаются вверх через латеральный лемнисковой путь; часть волокон оканчивается в латеральных лемнисковых ядрах, а большинство аксонов минует эти ядра и следует до нижнего двухолмия, где все или почти все слуховые волокна образуют синапсы. Отсюда слуховой путь проходит к медиальным коленчатым телам, где все волокна заканчиваются синапсами. Окончательно слуховой путь завершается в слуховой коре, располагающейся главным образом в верхней извилине височной доли (рис. 11-5Б). Базилярная мембрана улитки на всех уровнях слухового пути представлена в форме определённых проекционных карт различных частот. Уже на уровне среднего мозга появляются нейроны, детектирующие на принципах латерального и возвратного торможения несколько признаков звука.

Слуховая кора

Проекционные области слуховой коры (рис. 11-5Б) располагаются не только в верхней части верхней височной извилины, но и простираются на наружную сторону височной доли, захватывая часть островковой коры и теменной покрышки.

Первичная слуховая кора непосредственно получает сигналы от внутреннего (медиального) коленчатого тела, в то время как слуховая ассоциативная область вторично возбуждается импульсами из первичной слуховой коры и таламических областей, граничащих с медиальным коленчатым телом.

Тонотопические карты. В каждой из 6 тонотопических карт звуки высокой частоты возбуждают нейроны в задней части карты, в то время как звуки низкой частоты возбуждают нейроны в передней её части. Предполагают, что каждая отдельная область воспринимает свои специфические особенности звука. Например, одна большая карта в первичной слуховой коре почти целиком дискриминирует звуки, которые субъекту кажутся высокими. Другая карта используется для определения направления поступления звука. Некоторые области слуховой коры выявляют специальные качества звуковых сигналов (например, неожиданное начало звуков или модуляции звуков).

Диапазон звуковой частоты, на которую отвечают нейроны слуховой коры уже, чем для нейронов спирального ганглия и мозгового ствола. Это объясняется, с одной стороны, высокой степенью специализации нейронов коры, а с другой стороны - феноменом латерального и возвратного торможения, усиливающего раз-

решающую способность нейронов воспринимать необходимую частоту звука.

Определение направления звука

Направление источника звука. Два уха, работающие в унисон, могут обнаруживать источник звука по разнице в громкости и времени, которое ему требуется, чтобы достичь обеих сторон головы. Человек определяет звук, идущий к нему, двумя путями. Временем задержки между поступлением звука в одно ухо и в противоположное ухо. Сначала звук поступает к уху, находящемуся ближе к источнику звука. Звуки низкой частоты огибают голову в силу их значительной длины. Если источник звука находится по средней линии спереди или сзади, то даже минимальный сдвиг от средней линии воспринимается человеком. Такое тонкое сравнение минимальной разницы во времени прихода звука осуществляется ЦНС в точках, где осуществляется конвергенция слуховых сигналов. Этими точками конвергенции являются верхние оливы, нижнее двухолмие, первичная слуховая кора. Различием между интенсивностью звуков в двух ушах. При высоких частотах звука размер головы заметно превышает длину звуковой волны, и волна отражается головой. Это приводит к возникновению разницы в интенсивности звуков, приходящих к правому и левому уху.

Слуховые ощущения

Диапазон частот, который воспринимает человек, включает около 10 октав музыкальной шкалы (от 16 Гц до 20 кГц). Этот диапазон постепенно уменьшается с возрастом за счёт снижения восприятия высоких частот. Различение частоты звука характеризуется минимальным различием по частоте двух близких звуков, которое ещё улавливается человеком.

Абсолютный порог слуховой чувствительности - минимальная сила звука, которую слышит человек в 50% случаев его предъявления. Порог слышимости зависит от частоты звуковых волн. Максимальная чувствительность слуха человека располагается в области от 500 до 4000 Гц. В этих границах воспринимается звук, имеющий чрезвычайно малую энергию. В диапазоне этих частот располагается область звукового восприятия речи человека.

Чувствительность к звуковым частотам ниже 500 Гц прогрессивно снижается. Это предохраняет человека от возможного постоянного ощущения низкочастотных колебаний и шумов, производимых собственным телом.

ПРОСТРАНСТВЕННАЯ ОРИЕНТАЦИЯ

Пространственная ориентация тела в покое и движении в значительной степени обеспечивается рефлекторной активностью, берущей начало в вестибулярном аппарате внутреннего уха.

Вестибулярный аппарат

Вестибулярный (преддверный) аппарат, или орган равновесия (рис. 11-1) расположен в каменистой части височной кости и состоит из костного и перепончатого лабиринтов. Костный лабиринт - система полукружных протоков (canales semicirculares) и сообщающаяся с ними полость - преддверие (vestibulum) . Перепончатый лабиринт - система тонкостенных трубок и мешочков, расположенная внутри костного лабиринта. В костных ампулах перепончатые каналы расширяются. В каждом ампулярном расширении полукружного канала находятся гребешки (crista ampullaris). В преддверии перепончатый лабиринт образуется две сообщающихся между собой полости: маточка, в которую открываются перепончатые полукружные каналы, и мешочек. Чувствительные области этих полостей - пятна. Перепончатые полукружные каналы, маточка и мешочек заполнены эндолимфой и сообщаются с улиткой, а также с расположенным в полости черепа эндолимфатическим мешком. Гребешки и пятна - воспринимающие области вестибулярного органа - содержат рецепторные волосковые клетки. В полукружных каналах происходит регистрация вращательных движений (угловое ускорение), в маточке и мешочке - линейное ускорение.

Чувствительные пятна и гребешки (рис. 11-6). В эпителии пятен и гребешков находятся чувствительные волосковые и поддерживающие клетки. Эпителий пятен покрыт студенистой отолитовой мембраной, содержащей отолиты - кристаллы карбоната кальция. Эпителий гребешков окружён желеобразным прозрачным куполом (рис. 11-6А и 11-6Б), легко смещающимся при движениях эндолимфы.

Волосковые клетки (рис. 11-6 и 11-6Б) находятся в гребешках каждой ампулы полукружных каналов и в пятнах мешочков преддверия. Волосковые рецепторные клетки в апикальной части содержат 40-110 неподвижных волосков (стереоцилии) и одну подвижную ресничку (киноцилия), расположенную на периферии пучка стереоцилий. Самые длинные стереоцилии находятся вблизи киноцилии, а длина остальных уменьшается по мере удаления от киноцилии. Волосковые клетки чувствительны к направлению действия стимула (дирекционная чувствительность, см. рис. 11-7А). При направлении раздражающего воздействия от стереоцилий к

Рис. 11-6. Рецепторная область органа равновесия. Вертикальные срезы через гребешок (А) и пятна (Б, В). ОМ - отолитовая мембрана; О - отолиты; ПК - поддерживающая клетка; РК - рецепторная клетка

киноцилии волосковая клетка возбуждается (происходит деполяризация). При противоположном направлении стимула происходит угнетение ответа (гиперполяризация).

Стимуляция полукружных каналов

Рецепторы полукружных каналов воспринимают ускорение вращения, т.е. углового ускорения (рис. 11-7). В состоянии покоя наблюдается баланс частоты нервных импульсов от ампул обеих сторон головы. Углового ускорения порядка 0,5° в секунду достаточно для смещения купола и сгибания ресничек. Угловое ускорение регистрируется благодаря инерции эндолимфы. При повороте головы эндолимфа остаётся в прежнем положении, а свободный конец купола отклоняется в сторону, противоположную повороту. Перемещение купола сгибает киноцилию и стероцилии, внедрённые в желеобразную структуру купола. Наклон стереоцилий по направлению к киноцилии вызывает деполяризацию и возбуждение; противоположное направление наклона приводит к гиперполяризации и торможению. При возбуждении в волосковых клетках генерируется рецепторный потенциал и происходит выброс ацетилхолина, который и активирует афферентные окончания вестибулярного нерва.

Рис. 11-7. Физиология регистрации углового ускорения. А - различная реакция волосковых клеток в гребешках ампул левого и правого горизонтальных полукружных каналов при повороте головы. Б - Последовательно увеличивающиеся изображения воспринимающих структур гребешка

Реакции организма, вызванные стимуляцией полукружных каналов.

Стимуляция полукружных каналов вызывает субъективные ощущения в виде головокружения, тошноты и других реакций, связанных с возбуждением вегетативной нервной системы. К этому добавляются объективные проявления в виде изменения тонуса глазных мышц (нистагм) и тонуса антигравитационных мышц (реакция падения). Головокружение является ощущением вращения и может вызвать нарушение равновесия и падение. Направление ощущения вращения зависит от того, какой полукружный канал был стимулирован. В каждом случае головокружение ориентировано в направлении, противоположном смещению эндолимфы. Во время вращения ощущение головокружения направлено в сторону вращения. Ощущение, испытываемое после прекращения вращения, направлено в сторону, противоположную от реального вращения. В результате головокружения возникают вегетативные реакции - тошнота, рвота, бледность, потоотделение, а при интенсивной стимуляции полукружных каналов возможно резкое падение АД (коллапс).

Нистагм и нарушения мышечного тонуса. Стимуляция полукружных каналов вызывает изменения мышечного тонуса, проявляющиеся в нистагме, нарушении координаторных проб и реакции падения.

Нистагм - ритмические подёргивания глаза, состоящие из медленных и быстрых движений. Медленные движения всегда направлены в сторону движения эндолимфы и являются рефлекторной реакцией. Рефлекс возникает в гребешках полукружных каналов, импульсы поступают к вестибулярным ядрам ствола мозга и оттуда переключаются к мышцам глаза. Быстрые движения определяются направлением нистагма; они возникают в результате активности ЦНС (как часть вестибулярного рефлекса из ретикулярной формации в ствол мозга). Вращение в горизонтальной плоскости вызывает горизонтальный нистагм, вращение в сагиттальной плоскости - вертикальный нистагм, вращение во фронтальной плоскости - вращательный нистагм.

Выпрямительный рефлекс. Нарушение указательной пробы и реакция падения являются результатом изменений тонуса антигравитационных мышц. Тонус мышц-разгибателей увеличивается на стороне тела, куда направлено смещение эндолимфы, и понижается на противоположной стороне. Так, если силы гравитации направлены на правую стопу, то голова и тело человека отклоняются вправо, смещая эндолимфу влево. Возникший рефлекс немедленно вызовет разгибание правой ноги и руки и сгибание левой руки и ноги, сопровождаемое отклонением глаз влево. Эти движения являются защитным выпрямительным рефлексом.

Стимуляция маточки и мешочка

Статическое равновесие. Пятно маточки, лежащее горизонтально на нижней её поверхности, реагирует на линейное ускорение в горизонтальном направлении (например, в положении лёжа); пятно мешочка, расположенное вертикально на боковой поверхности мешочка (рис. 11-7Б), определяет линейное ускорение в вертикальном направлении (например, в положении стоя). Наклон головы смещает мешочек и маточку на какой-то угол между горизонтальным и вертикальным положением. Сила тяжести отолитов двигает отолитовую мембрану по отношению к поверхности сенсорного эпителия. Цилии, внедрённые в отолитовую мембрану, сгибаются под влиянием отолитовой мембраны, скользящей вдоль них. Если цилии сгибаются в сторону киноци-

Лии, то происходит увеличение импульсной активности, если в другую сторону от киноцилии, то импульсная активность уменьшается. Таким образом, функцией мешочка и маточки является поддержание статического равновесия и ориентация головы по отношению к направлению силы тяжести. Равновесие во время линейного ускорения. Пятна маточки и мешочка участвуют также в определении линейного ускорения. Когда человек неожиданно получает толчок вперёд (ускорение), то отолитовая мембрана, имеющая инерционность намного больше, чем окружающая жидкость, смещается назад на цилии волосковой клетки. Это вызывает поступление в нервную систему сигнала о нарушении равновесия тела, и человек чувствует, что он падает назад. Автоматически человек наклоняется вперёд до тех пор, пока это движение не вызовет одинаково равное ощущение падения вперёд, потому что отолитовая мембрана под влиянием ускорения возвращается на своё место. В этой точке нервная система определяет состояние подходящего равновесия и прекращает наклон тела вперёд. Следовательно, пятна управляют поддержанием равновесия во время линейного ускорения.

Проекционные пути вестибулярного аппарата

Вестибулярная ветвь VIII черепного нерва образована отростками примерно 19 тыс. биполярных нейронов, образующих чувствительный ганглий. Периферические отростки этих нейронов подходят к волосковым клеткам каждого полукружного канала, маточки и мешочка, а центральные отростки направляются в вестибулярные ядра продолговатого мозга (рис. 11-8А). Аксоны нервных клеток второго порядка связаны со спинным мозгом (преддверно-спинномозговой путь, оливо-спинномозговой путь) и поднимаются в составе медиальных продольных пучков к двигательным ядрам черепных нервов, осуществляющих контроль движений глаза. Имеется также путь, проводящий импульсы от вестибулярных рецепторов через таламус к коре больших полушарий мозга.

Вестибулярный аппарат является частью мультимодальной системы (рис. 11-8Б), включающей зрительные и соматические рецепторы, которые посылают сигналы к вестибулярным ядрам либо непосредственно, либо через вестибулярные ядра мозжечка или ретикулярную формацию. Входящие сигналы интегрируются в вестибулярных ядрах, и выходящие команды воздействуют на глазодвигательные и спинальные системы моторного контроля. На рис. 11-8Б

Рис. 11-8. А Восходящие пути вестибулярного аппарата (вид сзади, мозжечок и кора больших полушарий удалены). Б. Мультимодальная система пространственной ориентации тела.

показана центральная и координирующая роль вестибулярных ядер, соединённых прямыми и обратными связями с основными рецепторными и центральными системами пространственной координации.

Изобретение относится к медицине, а именно к физиотерапии. Способ включает стимулирование области волосковых сенсорных клеток с использованием звуковой стимуляции. Для этого выделяют полосу частот, соответствующую поврежденной области волосковых сенсорных клеток, имеющей высокий слуховой порог. Эту полосу определяют в качестве заданной полосы частот. Осуществляют подачу звукового сигнала для стимуляции поврежденной области волосковых сенсорных клеток. При этом используют интерфейс модели улитки с изображением области волосковых сенсорных клеток, разделенных в соответствии с разрешающей способностью 1/k октавы. Проводят выработку звукового сигнала полосы частот, соответствующей выбранному изображению области волосковых сенсорных клеток, в том случае, когда пользователь выбирает по меньшей мере одно изображение области волосковых сенсорных клеток. Слуховой порог определяют с использованием ответной информации в соответствии с выданным звуковым сигналом. При этом звуковой сигнал соответствует по меньшей мере одному сигналу, выбранному из группы, в которую входят амплитудно-модулированный тональный сигнал, частотно-модулированный тональный сигнал, импульсный тональный сигнал и амплитудно-модулированный узкополосной шум или комбинация тональных сигналов. Способ повышает точность диагностики слуха за счет повышения разрешающей способности звуковых сигналов, может быть использован при лечении тугоухости. 11 з.п. ф-лы, 15 ил.

Рисунки к патенту РФ 2525223

Предпосылки к созданию изобретения

Настоящее изобретение в общем имеет отношение к способу и устройству для стимулирования волосковой сенсорной клетки с использованием звукового сигнала. Более конкретно, настоящее изобретение имеет отношение к способу и устройству для точной диагностики слуха пациента и для улучшения слуха (остроты слуха) по результатам диагностики.

Каждый орган, который передает звук в мозг, называют органом слуха.

Орган слуха подразделяется на наружное ухо, среднее ухо и внутреннее ухо. Поступающий снаружи через наружное ухо звук создает вибрации барабанной перепонки, которые поступают к улитке внутреннего уха через среднее ухо.

Слуховые волосковые сенсорные клетки расположены на базальной мембране улитки. Число волосковых сенсорных клеток, расположенных на базальной мембране, составляет около 12,000.

Базальная мембрана имеет длину ориентировочно от 2.5 до 3 см. Волосковые сенсорные клетки, расположенные на начальной части базальной мембраны, обладают чувствительностью к звукам высоких частот, а волосковые сенсорные клетки, расположенные на конце базальной мембраны, обладают чувствительностью к звукам низких частот. Это называют частотной специфичностью (избирательностью) волосковых сенсорных клеток. Обычно разрешающая способность частотной специфичности, соответствующая идеальной интенсивности стимуляции, равна ориентировочно 0.2 мм (0.5 полутона) на базальной мембране.

В последнее время в связи с распространением использования портативных звуковых устройств и воздействием на человека различных шумов многие люди стали страдать нейросенсорной тугоухостью.

Нейросенсорная тугоухость представляет собой явление дегенерации слуха, вызванное повреждением волосковых сенсорных клеток, которое возникает в результате старения, воздействия шума, неблагоприятной реакции на лекарство, по генетическим причинам и т.п.

Нейросенсорную тугоухость подразделяют на слабую тугоухость, умеренную тугоухость, сильную тугоухость и глубокую тугоухость. Обычно трудно нормально разговаривать с человеком, имеющим умеренную тугоухость, сильную тугоухость и глубокую тугоухость.

Полагают, что в настоящее время около десяти процентов всего населения земли имеют слабую тугоухость, при которой человек чувствует снижение своего слуха. Кроме того, полагают, что около 260,000,000 человек или больше имеют умеренную тугоухость, сильную тугоухость или глубокую тугоухость только в развитых странах.

Однако способа лечения тугоухости не существует; имеются только слуховые аппараты, такие как слуховые аппараты для тугоухих.

Слуховой аппарат усиливает внешний звук, чтобы его можно было услышать, так что слуховой аппарат не может предотвращать дегенерацию (снижение) слуха. Существует специфическая проблема, связанная с тем, что слух пользователя слухового аппарата снижается сильнее за счет усиленного звука.

Таким образом требуется способ лечения тугоухости без использования слухового аппарата.

С другой стороны, способ проверки чистого слуха (способ проверки слышимости чистых тонов) как способ диагностирования тугоухости широко используют как международный стандартный способ проверки слуха, причем в указанном способе проверки чистого слуха используют частотную специфичность волосковых сенсорных клеток.

Обычно при проверке чистого слуха разделяют равномерно базальную мембрану на шесть частей с интервалом разрешающей способности одна октава и определяют частотную специфичность волосковых сенсорных клеток, расположенных на каждой из указанных шести частей, при воздействии шести частотных сигналов (например, 250, 500, 1000, 2000, 4000 и 8000 Гц).

В том случае, когда имеется нормальная частотная специфичность, так как волосковая сенсорная клетка не повреждена, реакция, соответствующая частотной специфичности волосковой сенсорной клетки, может возникать в ответ на интенсивность стимуляции, имеющую малое звуковое давление.

Например, в том случае, когда частотная специфичность волосковой сенсорной клетки, соответствующая 1000 Гц, является нормальной, электрическая реакция в этой волосковой сенсорной клетке возникает на частоте 1000 Гц при уровне звукового давления (SPL) -1.4 dB.

При обычной диагностике слуха обследуемого человека опытный оператор создает звуковые сигналы, соответствующие частям базальной мембраны, разделенным промежутком в одну октаву, с использованием сложного проверочного устройства. Если обследуемый человек слышит звуковые сигналы, соответствующие каждой из частей, то он соответственно нажимает кнопку. В этом случае трудно провести точную диагностику слуха, так как разрешающая способность является низкой. Кроме того, такая диагностика слуха является неудобной.

Сущность изобретения

В связи с изложенным задачей настоящего изобретения является устранение указанных недостатков известного уровня техники.

В соответствии с настоящим изобретением предлагаются способ и устройство для стимулирования волосковой сенсорной клетки с использованием звукового сигнала, позволяющие произвести лечение тугоухости.

В соответствии с настоящим изобретением предлагаются также способ и устройство для стимулирования волосковой сенсорной клетки с использованием звукового сигнала, позволяющие произвести более точное диагностирование слуха пользователя.

В соответствии с настоящим изобретением предлагаются также способ и устройство для стимулирования волосковой сенсорной клетки с использованием звукового сигнала, позволяющие произвести точное диагностирование слуха пользователя в удаленном месте и позволяющие обеспечить лечение тугоухости.

Способ стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением включает в себя следующие операции: (а) выделение полосы частот, соответствующей поврежденной области волосковой сенсорной клетки, в соответствии с заданным алгоритмом; (b) определение полосы частот, соответствующей поврежденной области волосковой сенсорной клетки, как заданной полосы частот и (с) выработка звукового сигнала, имеющего заданную интенсивность в заданной полосе частот, чтобы стимулировать поврежденную область волосковой сенсорной клетки.

Способ стимулирования волосковой сенсорной клетки в соответствии с другим примерным вариантом настоящего изобретения предусматривает использование интерфейса модели улитки, имеющего изображения области волосковой сенсорной клетки, разделенные в соответствии с разрешающей способностью 1/k октавы, где k является положительным целым числом больше 2; выработку звукового сигнала полосы частот, соответствующей по меньшей мере одной полосе (полосе частот), выбранной из группы, имеющей изображения области волосковой сенсорной клетки; и обнаружение поврежденной области волосковой сенсорной клетки за счет ответа пользователя в соответствии с выданным (полученным пользователем) звуковым сигналом.

Способ обеспечения стимулирования волосковой сенсорной клетки при помощи устройства, соединенного электрически с клиентом через сеть связи, в соответствии с другим аспектом настоящего изобретения включает в себя следующие операции: (а) передача клиенту приложения для диагностики слуха, причем указанное приложение содержит интерфейс модели улитки, имеющий изображения области волосковой сенсорной клетки, разделенные в соответствии с разрешающей способностью 1/k октавы; (b) получение ответной информации пользователя (клиента) в соответствии со звуковым сигналом полосы частот, соответствующей по меньшей мере одному из изображений области волосковой сенсорной клетки; (с) определение полосы частот, соответствующей поврежденной области волосковой сенсорной клетки, как заданной полосы частот с использованием ответной информации и (d) передача клиенту звукового сигнала заданной полосы частот, имеющего заданную интенсивность.

Предлагается также считываемое компьютером средство программирования, осуществляющее указанные здесь выше способы.

Устройство стимулирования волосковой сенсорной клетки с использованием звуковой стимуляции в соответствии с настоящим изобретением содержит секцию диагностирования слуха (остроты слуха), выполненную с возможностью измерения слухового порога в области волосковой сенсорной клетки за счет использования ответной информации пользователя в соответствии со специфическим звуковым сигналом; секцию обнаружения области стимуляции, выполненную с возможностью определения полосы частот, соответствующей поврежденной области волосковой сенсорной клетки, как заданной полосы частот, с использованием измеренного слухового порога и секцию стимуляции лечения, выполненную с возможностью выработки звукового сигнала, имеющего заданную интенсивность в найденной заданной полосе частот.

Как уже описано здесь выше, за счет использования способа и устройства для стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением пользователь может легко и точно производить диагностику слуха с использованием интерфейса модели улитки.

За счет использования способа и устройства для стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением пользователь может визуально проверять звуковой сигнал стимуляции и улучшать состояние слуха.

Способ и устройство для стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением позволяют коренным образом улучшать слух.

Указанные ранее и другие характеристики изобретения будут более ясны из последующего детального описания, приведенного со ссылкой на сопроводительные чертежи, на которых аналогичные детали имеют одинаковые позиционные обозначения.

Краткое описание чертежей

На фиг.1 показана первая блок-схема устройства для стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом настоящего изобретения.

На фиг.2 показана вторая блок-схема устройства для стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом настоящего изобретения.

На фиг.3 показан интерфейс модели улитки в соответствии с примерным вариантом настоящего изобретения.

На фиг.4 показана первая схема последовательности операций способа диагностирования слуха в соответствии с примерным вариантом настоящего изобретения.

На фиг.5 показана вторая схема последовательности операций способа стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом настоящего изобретения.

На фиг.7 показан график результатов проверки чистого слуха одного обследуемого человека.

На фиг.8 показана заданная полоса частот, определенная для одного обследуемого человека в соответствии с фиг.7.

На фиг.9 показан регламент для звукового сигнала стимуляции.

На фиг.12 показан график слухового порога правого уха до и после стимуляции при помощи звукового сигнала.

На фиг.14 показана таблица результатов измерения слуха для правого уха после прекращения подачи звукового сигнала стимуляции.

На фиг.15 показан график, соответствующий таблице, показанной на фиг.14.

Подробное описание изобретения

Далее описаны примерные варианты настоящего изобретения. Однако следует иметь в виду, что описанные здесь специфические конструктивные и функциональные детали служат только для пояснения описанных примерных вариантов настоящего изобретения, причем эти примерные варианты настоящего изобретения могут быть реализованы в различных альтернативных формах и поэтому указанные детали не следует рассматривать как ограничивающие изложенные здесь примерные варианты настоящего изобретения.

Таким образом, несмотря на то что настоящее изобретение допускает различные модификации и альтернативные формы, далее подробно будут описаны его специфические варианты, показанные в качестве примера на чертежах. Однако следует иметь в виду, что раскрытые специфические формы не предназначены для ограничения изобретения, но, наоборот, изобретение перекрывает все такие модификации, эквиваленты и альтернативы, которые не выходят за рамки настоящего изобретения и соответствуют его сущности.

Следует иметь в виду, что, несмотря на то что такие слова, как первый, второй и т.д., могут быть использованы для описания различных элементов, указанные слова не ограничивают эти элементы. Эти слова позволяют только отличить один элемент от другого. Например, первый элемент может быть назван вторым элементом и, аналогично, второй элемент может быть назван первым элементом, что не выходит за рамки настоящего изобретения. Кроме того, использованный здесь термин "и/или" содержит любые и все комбинации одного или нескольких объединенных перечисленных элементов.

Следует иметь в виду, что когда указано, что элемент "соединен" или "связан" с другим элементом, то он может быть непосредственно соединен или связан с другим элементом или же (между ними) могут присутствовать промежуточные элементы. В отличие от этого, когда указано, что элемент "непосредственно соединен" или "непосредственно связан" с другим элементом, то промежуточные элементы отсутствуют. Другие слова, которые использованы для описания связи между элементами, также следует интерпретировать аналогичным образом (например, "между" следует отличать от "непосредственно между", "рядом" следует отличать от "непосредственно рядом" и т.д.).

Используемая здесь терминология служит только для описания специфических вариантов и не предназначена для ограничения изобретения. Использованные здесь формы единственного числа включают в себя множественное число, если только из контекста явно не следует иное. Кроме того, следует иметь в виду, что такие использованные здесь термины, как "включает в себя", "содержит", "содержащий" и/или "включающий в себя", указывают на наличие заданных характеристик (признаков), целых чисел, операций, элементов и/или компонентов, однако не препятствуют наличию или добавке одной (одного) или нескольких других характеристик, целых чисел, операций, элементов, компонентов и/или их групп.

Если специально не оговорено иное, все использованные здесь термины (в том числе технические и научные термины) имеют общепринятое значение, понятное специалистам в данной области, для которых и предназначено настоящее изобретение. Следует также иметь в виду, что термины, которые определены в обычно используемых словарях, следует интерпретировать в том значении, которое соответствует значению в контексте изобретения, и не следует интерпретировать в идеализированном или слишком формальном смысле, если только специально не оговорено иное.

На фиг.1 показана блок-схема устройства для стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом осуществления настоящего изобретения.

Как это показано на фиг.1, устройство для стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением содержит секцию 100 диагностирования слуха, секцию 102 обнаружения области стимуляции и секцию 104 стимуляции лечения.

Секция 100 диагностирования слуха создает звуковой сигнал, соответствующий специфической полосе частот пользователя, и измеряет слух пользователя в этой полосе частот в соответствии с ответом пользователя на созданный звуковой сигнал. Измерение слуха может быть осуществлено при помощи тональной аудиометрии РТА, отзвукового излучения ОАЕ и аудиометрии с вызываемым ответом ERA и т.п.

В соответствии с примерным вариантом осуществления настоящего изобретения секция 100 диагностирования слуха создает звуковые сигналы полосы частот, имеющие разрешающую способность (имеющие промежутки по частоте между собой) меньше чем одна октава, подает их пользователю, и обнаруживает местоположение поврежденной волосковой сенсорной клетки и степень повреждения волосковой сенсорной клетки в соответствии с поданным звуковым сигналом.

Преимущественно, секция 100 диагностирования слуха подает обследуемому человеку звуковые сигналы полосы частот, имеющие разрешающую способность 1/k октавы (где k является положительным целым числом больше 2), а предпочтительнее разрешающую способность от 1/3 до 1/24 октавы, и диагностирует слух пользователя в соответствии с поданным звуковым сигналом. В этом случае в соответствии с одним примерным вариантом осуществления настоящего изобретения поданный пользователю звуковой сигнал соответствует средней частоте в диапазоне от 250 Гц до 12000 Гц. В случае деления диапазона средних частот с максимальной разрешающей способностью 1/24 октавы вся область волосковой сенсорной клетки пользователя может быть разделена на 134 полосы частот (области полос частот).

При обследовании слуха пользователю подают звуковой сигнал в специфической полосе частот, выбранной из 134 полос частот, и пользователь вводит ответную информацию в ответ на поданный звуковой сигнал, уровень громкости которого регулируют.

Ответную информацию в соответствии с выбранным уровнем громкости хранят как слуховой порог, соответствующий звуковому сигналу в выбранной полосе частот. Здесь под слуховым порогом понимают слуховой порог области волосковой сенсорной клетки, имеющей частотную специфичность относительно выбранной полосы частот.

Секция 102 обнаружения области стимуляции производит обнаружение области стимуляции с использованием слухового порога для звукового сигнала каждой полосы частот. В данном случае обнаружение области стимуляции представляет собой обнаружение области, в которой следует создать звуковой сигнал стимуляции. В частности, при обнаружении области стимуляции определяют полосу частот, соответствующую поврежденной области волосковой сенсорной клетки.

Секция 104 стимуляции лечения подает звуковой сигнал, имеющий заданную интенсивность в полосе частот поврежденной области волосковой сенсорной клетки, обнаруженной при помощи секции 102 обнаружения области стимуляции. В данном случае звуковой сигнал может иметь интенсивность (децибелы) выше на заданный уровень, чем хранящийся в памяти слуховой порог для соответствующей полосы частот.

В соответствии с одним примерным вариантом осуществления настоящего изобретения звуковой сигнал соответствует по меньшей мере одному сигналу, выбранному из группы, в которую входят амплитудно-модулированный тональный сигнал, частотно-модулированный тональный сигнал, импульсный тональный сигнал и амплитудно-модулированный узкополосной шум или комбинация тональных сигналов и шума.

Более того, в случае повреждения множества областей волосковой сенсорной клетки звуковой сигнал может быть подан в поврежденные области волосковой сенсорной клетки в определенном порядке в зависимости от степени повреждения, может быть подан в поврежденные области волосковой сенсорной клетки в случайном порядке или может быть подан одновременно во все поврежденные области волосковой сенсорной клетки.

В том случае, когда звуковой сигнал подают в поврежденные области волосковой сенсорной клетки с различными интенсивностями, в различном виде или в различном порядке, слух пользователя может быть улучшен.

На фиг.2 показана блок-схема устройства для стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом настоящего изобретения.

Как это показано на фиг.2, секция 100 диагностирования слуха в соответствии с данным вариантом содержит секцию 200 выработки пользовательского интерфейса UI и секцию 202 хранения ответной информации.

В соответствии с одним примерным вариантом осуществления настоящего изобретения секция 200 выработки UI индицирует интерфейс модели улитки, показанный на фиг.3, на секции 232 индикации, так что не имеющий опыта обследуемый человек сам может диагностировать свой слух.

Как это показано на фиг.3, интерфейс модели улитки в соответствии с настоящим изобретением имеет изображение 300, соответствующее областям волосковой сенсорной клетки, разделенным с использованием высокой разрешающей способности (разделенным с высокой дискретностью). В данном случае, так как весь частотный диапазон для диагностирования слуха соответствует средним частотам от 250 Гц до 12000 Гц, то интерфейс модели улитки может иметь 134 изображения 300 областей волосковой сенсорной клетки, если весь указанный частотный диапазон разделен с использованием разрешающей способности 1/24 октавы.

В том случае, когда пользователь выбирает одно из изображений 300 областей волосковой сенсорной клетки для измерения слуха, вырабатывается звуковой сигнал полосы частот, согласованный с выбранным изображением области волосковой сенсорной клетки. В данном случае под полосой частот, согласованной с изображением области волосковой сенсорной клетки, понимают полосу частот, имеющую частотную специфичность, соответствующую частотной специфичности области волосковой сенсорной клетки, связанной с изображением. Кроме того, следует иметь в виду, что изображение 300 области волосковой сенсорной клетки может быть выбрано с использованием кнопок, мыши, сенсорного экрана и т.п.

В том случае, когда вырабатывают (подают пользователю) звуковой сигнал, пользователь сам может регулировать интенсивность полученного звукового сигнала при помощи регулятора 302 громкости и выдавать ответную информацию относительно точки интенсивности, в которой он больше не слышит звуковой сигнал.

Секция 202 хранения ответной информации получает ответную информацию, соответствующую каждому звуковому сигналу, от секции 220 ввода пользователя и хранит полученную ответную информацию. В данном случае в секции 220 ввода пользователя могут быть использованы клавиши, мышь или сенсорный экран. В соответствии с одним примерным вариантом осуществления настоящего изобретения ответная информация может храниться как слуховой порог полосы частот, связанный с соответствующим звуковым сигналом, как это указано здесь выше.

При помощи указанного способа может быть измерена острота слуха в областях волосковой сенсорной клетки.

Как это показано на фиг.2, секция 102 обнаружения области стимуляции содержит секцию 204 сравнения слухового порога и секцию 206 определения заданной полосы частот.

Секция 204 сравнения слухового порога производит сравнение слухового порога пользователя, который хранится в секции 202 хранения ответной информации, с опорным слуховым порогом.

Секция 204 сравнения слухового порога определяет - выше или ниже слуховой порог в измеренной полосе частот, чем опорный слуховой порог.

Секция 206 определения заданной полосы частот определяет полосу частот, в которой необходимо провести лечение в соответствии с результатом сравнения, как заданную полосу частот. В данном случае под определением (нахождением) заданной полосы частот понимают обнаружение полосы частот соответствующей поврежденной области волосковой сенсорной клетки, причем заданная полоса частот может быть определена в единицах разрешающей способности 1/k октавы аналогично тому, как это сделано в секции 100 диагностирования слуха. Однако определение заданной полосы частот не ограничивается только этим способом. Например, диапазон полосы частот, соответствующий поврежденным областям волосковой сенсорной клетки, имеющим высокий слуховой порог и расположенным непрерывно, может быть определен как заданная полоса частот.

Информацию относительно определения одной или нескольких заданных полос частот и информацию порядка (порядка стимуляции) в соответствии со степенью повреждения хранят в памяти 208, где она подобрана в соответствии с информацией идентификации пользователя.

Секция 104 стимуляции лечения в соответствии с данным вариантом содержит секцию 210 определения интенсивности звукового сигнала, секцию 212 определения вида звукового сигнала, секцию 214 определения порядка стимуляции звукового сигнала, секцию 216 выработки звукового сигнала и секцию 218 тактирования и выдает звуковой сигнал пользователю с использованием информации, хранящейся в памяти 208.

Секция 210 определения интенсивности звукового сигнала производит определение интенсивности звукового сигнала, подаваемого пользователю.

Желательно, чтобы секция 210 определения интенсивности звукового сигнала определяла интенсивность с уровнем на величину от 3 до 20 децибел выше, чем слуховой порог в каждой заданной полосе частот, как интенсивность звукового сигнала.

В том случае, когда заданную полосу частот определяют как диапазон полос частот, соответствующий расположенным непрерывно областям волосковой сенсорной клетки, секция 210 определения интенсивности звукового сигнала может определять интенсивность на величину от 3 до 20 децибел выше, чем среднее значение слуховых порогов областей волосковой сенсорной клетки, как интенсивность звукового сигнала.

Преимущественно, интенсивность звукового сигнала может быть определена в диапазоне от 3 до 10 децибел.

Секция 212 определения вида звукового сигнала определяет вид звукового сигнала, подаваемого пользователю, принимая во внимание выбор пользователя, степень потери слуха пользователя, которому требуется лечение, или заданную полосу частот.

В соответствии с одним примерным вариантом осуществления настоящего изобретения звуковым сигналом может быть амплитудно-модулированный тональный сигнал, частотно-модулированный тональный сигнал (далее - тональный сигнал точки органа), импульсный тональный сигнал, амплитудно-модулированный узкополосной шум и т.п. В данном случае секция 212 определения вида звукового сигнала определяет по меньшей мере один сигнал, выбранный из группы, в которую входят один из тональных сигналов, тональный сигнал точки органа и шум или комбинация тональных сигналов, тонального сигнала точки органа и шума в качестве звукового сигнала, подаваемого пользователю.

Секция 214 определения порядка стимуляции определяет порядок подачи звукового сигнала относительно заданных полос частот, принимая во внимание выбор пользователя, степень потери слуха пользователя, которому требуется лечение, или смежную заданную полосу частот.

Преимущественно, секция 214 определения порядка стимуляции может определять порядок подачи звукового сигнала в последовательности, начинающейся от полосы частот, соответствующей наиболее поврежденной области волосковой сенсорной клетки. Однако следует иметь в виду, что указанный порядок подачи не ограничивается только таким порядком. Например, звуковой сигнал может быть подан в случайном порядке или может быть одновременно подан во всех заданных полосах частот.

Секция 216 выработки звукового сигнала вырабатывает звуковой сигнал, имеющий заданные интенсивность, вид и порядок. В том случае, когда существуют заданные полосы частот и звуковые сигналы в заданных полосах частот выдают индивидуально, может быть задано время подачи каждого звукового сигнала. Секция 218 тактирования определяет время подачи каждого звукового сигнала и управляет секцией 216 выработки звукового сигнала так, чтобы секция 216 выработки звукового сигнала по окончании времени подачи соответствующего звукового сигнала переходила к выработке звукового сигнала в следующей заданной полосе частот или прекращала выработку звукового сигнала.

В соответствии с одним примерным вариантом осуществления настоящего изобретения секция 200 выработки UI индицирует информацию на интерфейсе модели улитки, когда выдают звуковой сигнал для лечения слуха пользователя, причем пользователь визуально видит, подается или нет звуковой сигнал, и получает информацию о его интенсивности, виде и т.п.

Например, секция 200 выработки UI может изменять цвет или размер изображения 300 области волосковой сенсорной клетки, соответствующей полосе частот (заданной полосе частот) звукового сигнала, выдаваемого в настоящее время по команде контроллера 230.

В том случае, когда звуковой сигнал представляет собой амплитудно-модулированный тональный сигнал, секция 200 выработки UI может изменять цвет или размер соответствующего изображения 300 области волосковой сенсорной клетки синхронно с изменениями амплитуды амплитудно-модулированного тонального сигнала.

В том случае, когда звуковой сигнал представляет собой частотно-модулированный тональный сигнал, секция 200 выработки UI может изменять цвет или размер соответствующего изображения 300 области волосковой сенсорной клетки синхронно с изменениями частоты частотно-модулированного тонального сигнала.

В том случае, когда звуковой сигнал представляет собой тональный сигнал точки органа или импульсный тональный сигнал, секция 200 выработки UI может изменять цвет или размер соответствующего изображения 300 области волосковой сенсорной клетки синхронно с изменениями тонального сигнала точки органа или импульсного тонального сигнала.

В соответствии с одним примерным вариантом осуществления настоящего изобретения пользователь может интуитивно проверять с использованием интерфейса модели улитки улучшение слуха в каждой из областей волосковой сенсорной клетки.

Секция 200 выработки UI содержит интерфейс модели улитки, что позволяет показывать изображение 300 области волосковой сенсорной клетки заданной полосы частот, определенное в соответствии с диагностикой слуха, разделенным от других изображений области волосковой сенсорной клетки. Кроме того, секция 200 выработки UI позволяет показывать изображение 300 поврежденной области волосковой сенсорной клетки с изменениями по цвету или размеру, которые меняются в соответствии со степенью повреждения.

Секция 200 выработки UI изменяет цвет или размер соответствующего изображения 300 области волосковой сенсорной клетки в соответствии со степенью улучшения слуха в каждой из областей волосковой сенсорной клетки за счет указанной выше стимуляции с использованием звукового сигнала (далее называемого "звуковой сигнал стимуляции"), так что пользователь может проверять улучшение остроты слуха.

Улучшение остроты слуха может быть выявлено за счет повторного измерения слухового порога в заданной полосе частот.

На фиг.4 показана схема последовательности операций способа диагностирования слуха в соответствии с примерным вариантом настоящего изобретения. В данном случае секция 232 индикации устройства для стимулирования волосковой сенсорной клетки выполнена как сенсорный экран.

Обратимся теперь к рассмотрению фиг.4, где показано, что в том случае, когда пользователь хочет провести диагностику своего слуха, в операция S400 устройство для стимулирования волосковой сенсорной клетки индицирует интерфейс модели улитки, показанный на фиг.3, на сенсорном экране 232. В данном случае используют интерфейс модели улитки, который имеет множество изображений областей волосковой сенсорной клетки, причем можно визуально различать полосы частот, полученные за счет деления диапазона средних частот с максимальной разрешающей способностью 1/24 октавы.

В операции S402 определяют, выбрал или нет пользователь изображение 300 области волосковой сенсорной клетки, индицируемое на интерфейсе модели улитки.

В операции S404 в том случае, когда пользователь выбрал изображение 300 области волосковой сенсорной клетки, подают звуковой сигнал полосы частот, соответствующий области волосковой сенсорной клетки, связанной с выбранным изображением 300.

В операции S406 устройство для стимулирования волосковой сенсорной клетки определяет, получена или нет ответная информация пользователя в соответствии со звуковым сигналом.

Пользователь может регулировать уровень громкости, если он не слышит звуковой сигнал, и выдает ответную информацию при той интенсивности, при которой он начинает слышать звуковой сигнал.

В операции S408 ответную информацию запоминают как слуховой порог в полосе частот, соответствующий каждому звуковому сигналу.

В операции S410 устройство для стимулирования волосковой сенсорной клетки производит сравнение слухового порога пользователя с опорным слуховым порогом после завершения ввода ответной информации.

В операции S412 за счет сравнения результатов определяют заданную полосу частот, в которой требуется стимуляция при помощи звукового сигнала.

В операции S414 запоминают информации относительно заданной полосы частот в памяти 208. В этом случае информация относительно заданной полосы частот может иметь информацию идентификации пользователя, информацию относительно слухового порога в полосе частот, в которой диагностируют слух, информацию относительно порядка подачи сигнала в соответствии со степенью повреждения и т.п.

В том случае, когда звуковые сигналы соответствуют разделению полос частот с разрешающей способностью 1/24 октавы, заданная полоса частот может быть определена в каждой из полос частот. Однако определение заданной полосы частот не ограничивается только этим случаем. В частности, специфический диапазон полос частот, в котором средние слуховые пороги выше опорных значений, может быть определен как заданная полоса частот. Например, в случае измерения остроты слуха с использованием каждого звукового сигнала, соответствующего полосам частот от 5920 Гц до 6093 Гц (первый интервал), от 6093 Гц до 6272 Гц (второй интервал) или от 6272 Гц до 6456 Гц (третий интервал), полученным за счет деления диапазона средних частот с разрешающей способностью 1/24 октавы, заданная полоса частот может быть определена в каждом из интервалов или в новом интервале, имеющем указанные выше три интервала, то есть от 5920 Гц до 6456 Гц.

На фиг.5 показана схема последовательности операций способа стимулирования волосковой сенсорной клетки в соответствии с примерным вариантом настоящего изобретения.

Устройство для стимулирования волосковой сенсорной клетки определяет интенсивность, вид, порядок и т.п. (сигнала) заданной полосы частот после определения заданной полосы частот в соответствии с указанным выше и выдает звуковой сигнал для улучшения слуха пользователя в соответствии с полученными результатами.

Обратимся теперь к рассмотрению фиг.5, где показано, что в операции S502 устройство для стимулирования волосковой сенсорной клетки считывает информацию относительно заданной полосы частот из памяти 208 и затем определяет интенсивность звукового сигнала заданной полосы частот в том случае, когда пользователь в операции S500 требует подачи звукового сигнала.

В операциях S504 и S506 определяют вид и порядок подачи звукового сигнала.

Как уже было указано здесь выше, порядок подачи звукового сигнала может быть определен в соответствии со степенью повреждения или может быть определен так, что звуковой сигнал подают случайным образом или подают одновременно на все области.

В операции S508 выдают звуковой сигнал в соответствии с определенными (найденными) интенсивностью, видом и порядком подачи.

В операции S510 в том случае, когда звуковой сигнал выдают в соответствии со степенью повреждения или выдают случайным образом, устройство для стимулирования волосковой сенсорной клетки определяет, закончилось или нет время подачи звукового сигнала.

В операции S512 в том случае, когда время подачи закончилось, начинают выдавать звуковой сигнал следующей заданной полосы частот.

С другой стороны, в том случае, когда выдают звуковой сигнал, устройство для стимулирования волосковой сенсорной клетки синхронизирует интерфейс модели улитки с изменениями амплитуды, частоты или периода импульсов звукового сигнала и изменяет цвет или размер изображения 300 области волосковой сенсорной клетки на интерфейсе модели улитки в соответствии с этими изменениями.

Способ стимулирования волосковой сенсорной клетки в соответствии с данным вариантом может быть реализован с использованием компьютера или портативного терминала пользователя или может быть реализован в госпитале и т.п. Кроме того, этот способ может быть реализован дистанционно в удаленном месте с использованием сети связи.

На фиг.6 показана система массового обслуживания для улучшения слуха в соответствии с примерным вариантом настоящего изобретения.

Как это показано на фиг.6, система массового обслуживания для улучшения слуха в соответствии с данным вариантом содержит сервер 600 для улучшения слуха, соединенный электрически по меньшей мере с одним пользователем (клиентом) 602 с использованием сети связи. В данном случае сеть связи содержит проводную сеть связи, имеющую Интернет, и частную линию связи, имеющую беспроводной Интернет, сеть подвижной связи и сеть спутниковой связи.

Сервер 600 улучшения слуха создает приложение для выработки интерфейса модели улитки, показанного на фиг.3, для пользователя (клиента) 602 в соответствии с запросом пользователя. В этом случае сервер 600 улучшения слуха может создавать указанное приложение при помощи различных способов, например таких, как способ загрузки или способ вставки приложения в web-страницу и т.п.

В том случае, когда пользователь выбирает определенное изображение области волосковой сенсорной клетки 300 с использованием интерфейса модели улитки, приложение выдает звуковой сигнал полосы частот, соответствующей области волосковой сенсорной клетки, выбранной пользователем.

Затем в том случае, когда пользователь 602 вводит ответную информацию относительно точки интенсивности, в которой звуковой сигнал не слышен, с использованием регулировки уровня громкости звукового сигнала эта ответная информация поступает в сервер 600 улучшения слуха.

Сервер 600 улучшения слуха имеет секцию обнаружения области стимуляции, как это показано на фиг.1 и 2, и определяет заданную полосу частот, в которой требуется лечение, с использованием поступившей ответной информации пользователя.

Кроме того, сервер 600 улучшения слуха запоминает информацию относительно заданной полосы частот, определяет интенсивность, вид, порядок подачи и т.п. сигнала заданной полосы частот в соответствии с запросом пользователя и подает звуковой сигнал заданной полосы частот пользователю (клиенту) 602 через сеть связи в соответствии с определенными (полученными) результатами.

Пользователь (клиент) 602 может иметь терминал, который обрабатывает приложение и имеет громкоговоритель, и представляет собой настольный компьютер, портативный компьютер (ноутбук), терминал связи с подвижными объектами и т.п.

Пользователь (клиент) 602 стимулирует свою волосковую сенсорную клетку за счет подачи звукового сигнала, созданного сервером 600 улучшения слуха.

Степень улучшения слуха, обеспечиваемая при помощи устройства для стимулирования волосковой сенсорной клетки в соответствии с настоящим изобретением, может быть проверена экспериментально.

На фиг.7 показан график результатов проверки чистого слуха одного обследуемого человека. В частности, на фиг.7 показаны результаты проверки слуха, полученные при обследовании слуха в диапазоне от 2000 Гц до 8000 Гц с разрешающей способностью 1/24 октавы с использованием секции диагностирования слуха.

Как это показано на фиг.7, правое ухо обследуемого человека имеет тугоухость плоского типа в полосе частот от 3000 Гц до 7000 Гц.

На фиг.8 показана заданная полоса частот, определенная для обследуемого человека с результатами, показанными на фиг.7. В частности, диапазон полосы частот от 5920 Гц до 6840 Гц, имеющий слуховой порог ориентировочно 50 dBHL, определен как заданная полоса для обследуемого человека с результатами, показанными на фиг.7.

Звуковой сигнал, такой как частотно-модулированный тональный сигнал или амплитудно-модулированный узкополосный тональный сигнал, связанный с определенной заданной полосой частот, показанной на фиг.8, подавали в правое ухо в течение 30 минут утром и вечером в течение 15 дней. В данном случае звуковой сигнал имеет интенсивность от 5 dBSL (SL - уровень ощущения) до 10 dBSL.

На фиг.9 показан регламент стимуляции звуковым сигналом. В частности, остроту слуха измеряли до начала стимуляции звуковым сигналом (первый случай), после 5 дней стимуляции звуковым сигналом (второй случай) и после 15 дней стимуляции звуковым сигналом (третий случай), после чего было проведено сравнение соответствующих измеренных слуховых порогов.

В каждом из указанных случаев остроту слуха измеряли 10 раз с разрешающей способностью 1/24 октавы и затем усредняли результаты измерения, чтобы исключить ошибку эксперимента.

На фиг.10 показана таблица сравнения результатов измерения слуха до подачи звукового сигнала стимуляции в правое ухо и после подачи звукового сигнала стимуляции в правое ухо в течение 10 дней.

На фиг.11 показана таблица сравнения результатов измерения слуха после подачи звукового сигнала стимуляции в правое ухо в течение 10 дней и после подачи звукового сигнала стимуляции в правое ухо в течение 15 дней.

Если обратиться к рассмотрению фиг.10 и 11, то можно увидеть, что слуховой порог в заданной полосе частот становится меньше после подачи звукового сигнала стимуляции, то есть слух улучшается.

На фиг.12 показан график слухового порога правого уха до и после проведения стимуляции при помощи звукового сигнала.

Как это показано на фиг.12, слуховой порог (правое ухо) в полосе частот от 5920 Гц до 6840 Гц ранее проведения стимуляции при помощи звукового сигнала равен 45.4 dBHL. Однако слуховой порог в этой полосе частот после стимуляции при помощи звукового сигнала в течение 10 дней становится равным 38.2 dBHL, то есть слуховой порог снижается. Кроме того, слуховой порог после стимуляции при помощи звукового сигнала в течение 15 дней становится равным 34.2 dBHL, то есть слуховой порог еще более снижается.

На фиг.13 показан регламент проверки постоянного поддержания состояния улучшения слуха после прекращения подачи звукового сигнала стимуляции в правое ухо.

Слух измеряли по истечении времени от 5 до 15 дней после прекращения подачи звукового сигнала стимуляции.

На фиг.14 показана таблица результатов измерения слуха после прекращения подачи звукового сигнала стимуляции в правое ухо. На фиг.15 показан график, соответствующий таблице, показанной на фиг.14.

Если обратиться к рассмотрению фиг.14 и 15, то можно увидеть, что эффект улучшения слуха сохраняется после прекращения подачи звукового сигнала стимуляции. Кроме того, можно видеть, что острота слуха улучшается ориентировочно на 7.9 dB по истечении 18 дней после прекращения подачи звукового сигнала стимуляции.

Следует иметь в виду, что любая ссылка в этом описании изобретения на "один из вариантов," "вариант," "примерный вариант" и т.п. означает, что специфический признак, деталь или характеристика, описанные со ссылкой на указанный вариант, включены по меньшей мере в один из вариантов изобретения. Появление таких ссылок в различных частях описании изобретения не обязательно означает, что все они относятся к одному и тому же варианту. Кроме того, когда специфический признак, деталь или характеристика описаны со ссылкой на один из вариантов, то можно предположить, что специалисты в данной области могут применить такой признак, деталь или характеристику для любого другого из вариантов.

Несмотря на то что были описаны предпочтительные варианты осуществления изобретения, совершенно ясно, что в него специалистами в данной области могут быть внесены изменения и дополнения, которые не выходят, однако, за рамки формулы изобретения.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ стимулирования области волосковых сенсорных клеток с использованием звуковой стимуляции, который включает в себя следующие операции:

(a) выделение полосы частот, соответствующей поврежденной области волосковых сенсорных клеток, имеющей высокий слуховой порог;

(b) определение полосы частот, соответствующей поврежденной области волосковых сенсорных клеток, в качестве заданной полосы частот;

(c) подача звукового сигнала, имеющего заданную интенсивность в заданной полосе частот, чтобы стимулировать поврежденную область волосковых сенсорных клеток,

причем операция (а) включает в себя:

использование интерфейса модели улитки, имеющего изображения области волосковых сенсорных клеток, разделенные в соответствии с разрешающей способностью 1/k октавы, где k является положительным целым числом больше 2;

выработку звукового сигнала полосы частот, соответствующей выбранному изображению области волосковых сенсорных клеток, в том случае, когда пользователь выбирает по меньшей мере одно изображение области волосковых сенсорных клеток, и определение слухового порога с использованием ответной информации в соответствии с выданным звуковым сигналом,

причем звуковой сигнал соответствует по меньшей мере одному сигналу, выбранному из группы, в которую входят амплитудно-модулированный тональный сигнал, частотно-модулированный тональный сигнал, импульсный тональный сигнал и амплитудно-модулированный узкополосной шум или комбинация тональных сигналов;

причем в операции (с) звуковой сигнал вырабатывается с интенсивностью, определяемой слуховым порогом.

2. Способ по п.1, в котором в том случае, когда повреждено множество областей волосковых сенсорных клеток, в операции (b) определяют диапазон полос частот, соответствующий расположенным непрерывно поврежденным областям, как заданную полосу частот.

3. Способ по п.1, в котором в том случае, когда определяют множество заданных полос частот, в операции (с) выдают звуковой сигнал в соответствии со степенью повреждения или выдают случайный звуковой сигнал.

4. Способ по п.1, в котором в том случае, когда определяют множество заданных полос частот, в операции (с) подают одновременно звуковой сигнал во всех заданных полосах частот.

5. Способ по п.1, в котором k выбирают из значений от 3 до 24.

6. Способ по п.1, в котором в операции (b) определяют полосу частот области волосковых сенсорных клеток, в которой слуховой порог превышает заданное опорное значение, как заданную полосу частот,

причем указанный способ дополнительно предусматривает:

(d) выработку изображения области волосковых сенсорных клеток, соответствующей ранее определенной заданной полосе частот, причем выданное изображение области волосковых сенсорных клеток наблюдают визуально.

7. Способ по п.6, в котором в операции (с) звуковой сигнал выдают с интенсивностью выше слухового порога на величину от 3 dB до 20 dB.

8. Способ по п.1, который дополнительно предусматривает:

Выработку изображения области волосковых сенсорных клеток, соответствующей полосе частот звукового сигнала, в том случае, когда звуковой сигнал представляет собой амплитудно-модулированный тональный сигнал, причем степень изменения амплитудно-модулированного тонального сигнала визуально наблюдают на изображении области волосковых сенсорных клеток.

9. Способ по п.1, который дополнительно предусматривает:

выработку изображения области волосковых сенсорных клеток, соответствующей полосе частот частотно-модулированного тонального сигнала, в том случае, когда звуковой сигнал соответствует частотно-модулированному тональному сигналу, причем степень изменения частотно-модулированного тонального сигнала визуально наблюдают на изображении области волосковых сенсорных клеток.

10. Способ по п.9, в котором частотно-модулированный тональный сигнал имеет разрешающую способность меньше чем 1/3 октавы.

11. Способ по п.1, который дополнительно предусматривает:

Выработку изображения области волосковых сенсорных клеток, соответствующей полосе частот звукового сигнала, в том случае, когда звуковой сигнал соответствует импульсному тональному сигналу, причем определение производят с использованием изображения области волосковых сенсорных клеток, в которой звуковой сигнал соответствует импульсному тональному сигналу.

12. Способ по п.1, в котором изображение области волосковых сенсорных клеток имеет цвет или размер, который изменяется в зависимости от улучшения степени слуха.

И будете в порядке.

Как устроен наш слух.

Уши открывают для нас мир голосов, звуков, мелодий. Сложный механизм передает в мозг звуки, приятные и не очень. В ухе находится также орган, помогающий нам свободно ориентироваться в пространстве и сохранять равновесие.
Орган слуха — это хитроумная система, состоящая из тончайших мембран, полостей, маленьких косточек и волосковых слуховых клеток. Ухо воспринимает невидимые звуковые колебания, волнообразно распространяющиеся в воздухе. Их ловит ушная раковина, в ухе колебания преобразуются в нервные импульсы, которые мозг регистрирует как звуки. Ушная раковина и наружный слуховой проход образуют наружное ухо. Железы в коже слухового прохода выделяют специальную смазку — ушную серу, чтобы бактерии, грязь и вода не могли проникнуть в высокочувствительные области внутреннего уха, расположенные в глубине черепа.
Слуховой проход заканчивается эластичной барабанной перепонкой, которая под действием звуковых колебаний начинает вибрировать, передавая колебательные импульсы на слуховые косточки среднего уха. Эти три маленькие косточки — молоточек, наковальня и стремечко — получили свои названия благодаря специфической форме. Они расположены своеобразной цепочкой, с помощью которой колебания диафрагмы преобразуются в энергию давления и передаются во внутреннее ухо.

Улитка — орган, где возникает слух.

Во внутреннем ухе находится так называемая улитка, в которой содержится концевой аппарат слухового нерва — кортиев орган. В спиралевидном канале улитки, заполненном вязкой жидкостью, располагаются примерно 20 тысяч микроскопических волосковых клеток. Они путем сложных химических процессов преобразуют колебания в нервные импульсы, которые по слуховому нерву направляются в центр слуха головного мозга. Здесь они воспринимаются уже как слуховое ощущение, будь то речь, музыка или другие звуки. Во внутреннем ухе находится и вестибулярный аппарат. Он состоит из трех полукружных каналов, расположенных под прямым углом друг к другу. Они наполнены лимфой. При каждом движении головы возникают легкие течения, которые улавливаются волосковыми клетками и передаются в виде нервных импульсов в боль­шие полушария мозга. Если человек начинает терять равновесие, эти импульсы вызывают рефлекторные реакции мускулатуры и глаз, и происходит коррекция положения тела.

Причины ослабления слуха.

Шум — одна из самых рас­пространенных причин нарушений слуха. Сила звука измеряется в децибелах (дБ). Звук силой 85-90 дБ и выше (такой шум создает стандартный кухонный комбайн или проезжающий в непосредственной близости грузовик), воздействующий на уши человека каждый день в течение длительного времени, может вызвать нарушения слуха. Постоянный шум вызывает чрезмерное раздражение, которое губительно воздействует на чувствительные клетки. Громкие звуки, например грохот взрыва, могут вызвать временную потерю слуха.
С возрастом острота слуха снижается. Этот процесс, как правило, начинается после 40 лет. Причина возрастного ослабления слуха — снижение работоспособности волосковых клеток.
Шум, стресс, прием некоторых медикаментов, вирусные инфекции и недостаточное кровоснабжение могут привести к нарушениям слуха.
Слух может также пострадать от неправильного положения шейных позвонков и челюсти, от чрезмерно высокого артериального давления. Все эти факторы могут — вызывать и резкое снижение слуха — неожиданно наступающую одностороннюю или двустороннюю глухоту. Они также нередко являются причиной шума в ушах, когда слышится какое то шуршание, шипение, свист или звон. Это явление обычно временное, но бывает и так, что шум в ушах беспокоит человека постоянно. При любых болезненных ощущениях в ушах немедленно обращайтесь к врачу, поскольку они могут привести к тугоухости и даже глухоте.

Улучшение слуха — помощь при нарушении слуха.

Примерно 20% людей в промышленно развитых странах страдает нарушениями слуха и нуждаются в его улучшении.
При первых же жалобах на снижение слуха обращайтесь к врачу: чем раньше будет проведено обследование, тем эффективнее может быть лечение.
Существуют разные модели слуховых аппаратов. Наряду с моделями, у которых микрофон прикреплен за ухом, есть аппараты, которые вставляются в ушную раковину и почти незаметны. В последние годы разработаны приборы-имплантанты, которые вживляются людям, страдающим полной глухотой.
Слуховой аппарат должен подбирать врач или специалист-акустик. Приборы не только должны усиливать звуки, но и фильтровать их.

Двухнедельная программа улучшения слуха.

Движение для улучшения слуха
«Санаторная программа» для ваших ушей улучшит слух и работу вестибулярного аппарата. Она включает:

  • для улучшения кровообращения.
  • Упражнения йоги для Развития чувства равновесия.

Расслабление для улучшения слуха
Телесный и духовный зажим мешает нам хорошо слышать.

  • Снимите напряжение и , в том числе точечного.
  • Научитесь слушать тишину, чтобы улучшить восприятие звуков.

Питание для улучшениня слуха

  • Поддержите свой слух правильным выбором продуктов питания, которые должны содержать много витамина В6. Это улучшит кровообращение.
  • Противодействуйте закупорке сосудов в ушах, отказавшись от пищи, содержащей насыщенные жирные кислоты.

Преграда шуму . Федор, 48 лет, многие годы страдал головными болями и . Врач никак не мог понять причину. Как-то раз врач пришел к Федору на дом и услышал непрерывный шум интенсивного движения на улице. Врач порекомендовал установить на окна ставни. Через пару недель симптомы практически сошли на нет.

Пройдите , если вы стали замечать, что забываете некоторые вещи.