Зрительные рецепторы глаза. Палочки и колбочки сетчатки глаза – строение и функции

Человеческий глаз – это один из самых сложноустроенных органов, отвечающий за восприятие всей окружающей информации. В формировании изображения важную роль играют палочки и колбочки, с помощью которых осуществляется преобразование световых и цветовых сигналов в нервные импульсы. Палочки и колбочки расположены на сетчатке глаза, образуют фотосенсорный слой, формирующий и передающий изображение в мозг. Благодаря им человек различает цвета, может видеть в темноте.

Основная информация про палочки

Форма палочек в глазу по напоминает вытянутые прямоугольники, длина которых составляет примерно 0,06 миллиметра. У каждого взрослого человека насчитывается более 120 миллионов палочек, которые в большей степени расположены на периферии сетчатки. Рецепторы состоят из таких слоев:

  • внешнего с мембранами, содержащими особый пигмент родопсин;
  • связующего, представленного множественными ресничками, передающими сигналы от внешнего отдела к внутреннему и наоборот;
  • внутреннего, в котором содержатся митохондрии, предназначенные для выработки и перераспределения энергии;
  • базального, в котором находятся нервные волокна, передающие все импульсы.

Палочки, расположенные в сетчатке глаза являются светочувствительными элементами, отвечающими за ночное зрение. Они не способны воспринимать цвета, но зато реагируют даже на один-единственный фотон. Именно благодаря им человек способен видеть в темноте, но при этом изображение будет исключительно черно-белым.

Возможность воспринимать свет даже в темное время суток обеспечивает пигмент родопсин. При нахождении на ярком освещении он «выгорает», а откликается только на короткие волны. После попадания в темноту пигмент регенерируется и улавливает даже незначительные лучики света.

Основные данные про колбочки

Колбочки по своей форме напоминают сосуды для проведения химических исследований, в честь которых и были названы. Длина этих рецепторов составляет примерно 0,05 миллиметра при ширине 0,004 миллиметра. В среднем в человеческом глазу имеется более семи миллионов колбочек, расположенных в большей степени в центральной части сетчатки. Они обладают низкой чувствительностью к световым лучам, но зато воспринимают всю цветовую гамму и быстро реагируют на движущиеся предметы.

Строение колбочек включает в себя такие сегменты:

  • Внешний, в котором имеются складки мембраны, заполненные пигментом йодопсином. Этот сегмент постоянно обновляется, обеспечивая полноценное цветное зрение.
  • Внутренний, в котором располагаются митохондрии и осуществляется энергетический обмен.
  • Синаптический, включающий в себя контакты (синапсы) передающие сигналы на зрительный нерв.
  • Перетяжку, представляющую собой мембрану плазматического типа, с помощью которой энергия перетекает из внутреннего сегмента во внешний. Для этого на ней имеется огромное количество микроскопических ресничек.

Полноценное восприятие всей цветовой гаммы обеспечивает йодопсин, который в свою очередь бывает нескольких видов:

  • Эритролаб (L тип) отвечает за восприятие длинных волн, передающих красно-желтые оттенки.
  • Хлоролаб (M тип) воспринимает средние волны, характерные для зелено-желтых оттенков.
  • Цианолаб (S тип) реагирует исключительно на короткие волны, отвечающие за синие цвета.

Стоит отметить, что разделение колбочек на три категории (трехкомпонентная зрительная гипотеза) считается не единственно верной. Существует теория о том, что в колбочках присутствует только два вида родопсина – эритролаб и хлоролаб, из чего следует, что они способны воспринимать только красные, желтые и зеленые оттенки. Синий же цвет передается с помощью выгоревшего родопсина. В подтверждение этой теории используется тот факт, что люди, страдающие от тританопии (отсутствие восприятия синего спектра) дополнительно жалуются на трудности со зрением в темное время суток. А так называемая «куриная слепота» возникает при дисфункции палочек.

Диагностика состояния рецепторов

Если возникает подозрение на сбои в функционировании палочек и колбочек в глазу, то следует записаться на прим к офтальмологу. К основным признакам поражения относятся:

  • резкое снижение остроты зрения;
  • появление перед глазами ярких вспышек, бликов, бабочек и звездочек;
  • ухудшение зрительной функции в сумерках;
  • отсутствие цветного изображения;
  • сокращение зрительных полей.

Для установления точного диагноза понадобятся не только консультация офтальмолога, но и прохождение специфических исследований. К ним относятся:

  • Исследование функции восприятия цветов при помощи 100-оттеночного теста или таблиц Ишихара.
  • Офтальмоскопия – исследование глазного дна для определения состояния сетчатки.
  • Ультразвуковое исследование глазного яблока.
  • Периметрия – определение зрительных полей.
  • Агиография флуоресцентного типа, необходимая для подсвечивания сосудов.
  • Компьютерная рефрактометрия, определяющая преломляющую силу глаза.

После получения данных может быть установлено одно из заболеваний. Чаще всего диагностируются:

  • Дальтонизм, при котором наблюдается невозможность различать цвета определенного спектра.
  • Гемералопия или «куриная слепота» – патология, при которой человек не способен нормально видеть в сумерках.
  • Макулодистрофия – аномалия, затрагивающая центральную часть сетчатки и приводящая к стремительной потере остроты зрения.
  • Отслойка сетчатки, которую может спровоцировать огромное количество заболеваний и внешних факторов.
  • Дегенерация сетчатки пигментного типа – наследственная патология, приводящая к серьезным зрительным нарушениям.
  • Хориоретинит – воспалительный процесс, затрагивающий все слои сетчатки.

Нарушения в работе колбочек и палочек может спровоцировать травма, а также запущенные воспалительные заболевания глаз, общие тяжелые инфекционные болезни.

Острота зрения и чувствительность к освещенности.

В сетчатке глаза человека содержится один тип палочек (в них – ярко-красный пигмент родопсин ), относительно равномерно воспринимающих практически весь диапазон видимого спектра (от 390 до 760 нм) и три типа колбочек (пигменты – йодопсины ), каждый из которых воспринимает свет определенной длины волны. В результате более широкого спектра поглощения родопсина палочки восприни­мают слабый свет, т. е. необходимы в темноте, колбоч­ки – при ярком свете. Таким образом, колбочки являются аппаратом дневного зрения, а палочки – суме­речного.

Палочек в сетчатке содержится больше, чем колбочек (120 10 6 и 6-7 10 6 соответственно). Распределение палочек и колбочек тоже неодинаково. Тонкие, вытянутые палочки (размеры 50 х 3 мкм) равномерно распределены по всей сетчатке, кроме центральной ямки (желтого пятна), где располагаются почти исключительно удлиненные конические колбочки (60 х 1,5 мкм). Так как в центральной ямке колбочки очень плотно упакованы (15 10 4 на 1 мм 2), этот участок отличается высокой остротой зрения (еще одна из причин). Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно (очередная причина) и сигналы от них подвергаются конвергенции (самая главная причина), но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения. Палочки предназначены воспринимать информацию об освещенности и форме предметов.

Дополнительное приспособление к ночному видению. У некоторых видов животных (коров, лошадей, особенно кошек и собак) наблю­дается свечение глаз в темноте. Это обусловлено наличием особой отража­тельной перепонки (тапетум) , лежащей на дне глаза, впереди сосудистой оболочки. Перепонка состоит из волокон, пропитанных серебристыми кристаллами, отражающими попадающий в глаз свет. Свет вторично проходит через сетчатку и фоторецепторы получают дополнительную порцию фотонов. Правда, четкость изображения при таком отражении снижается, зато повышается чувствительность.

Цветовосприятие

Каждый зрительный пиг­мент поглощает часть падающего на него света и отража­ет остальную часть. Поглощая фотон света, зритель­ный пигмент меняет свою конфигурацию, при этом осво­бождается энергия, которая используется для осуществ­ления цепи химических реакций, что и приводит к возникновению нервного импульса.

У человека обнаружены три типа колбочек , в каждом из которых содержится свой зрительный пигмент – один из трех йодопсинов , максимально чувствительный к синему, зеленому или желтому свету. Электрический сигнал на выходе колбочек того или иного типа зависит от количества квантов, возбуждающих фотопигмент. Цветовое ощущение, очевидно, определяется соотношением между нервными сигналами от каждого из этих трех типов колбочек.

Может удивить кажущееся несоответствие между тремя типами колбочковых пигментов – синего, зеленого и желтого – и тремя «основными» цветами – синим, желтым и красным. Но хотя максимумы поглощения зрительных пигментов и не совпадают с тремя основными цветами, существенного противоречия в этом нет, поскольку свет любой длины волны (как и свет, состоящий из сочетания волн разной длины) создает уникальное соотношение между уровнями возбуждения цветовых рецепторов трех типов. Такое соотношение обеспечивает нервную систему, перерабатывающую сигналы от «трехпигментной» рецепторной системы, достаточной информацией для идентификации любых световых волн видимой части спектра.

У человека и у других приматов в цветовом зрении участвуют колбочки. Что в этом отношении можно сказать о палочках?

В сетчатке человека палочки имеются только за пределами центральной ямки и играют важную роль главным образом при слабой освещенности. Это объясняется двумя обстоятельствами. Во-первых, палочки более чувствительны к свету, чем колбочки (у родопсина очень широкий спектр поглощения ). Во-вторых, в их нервных связях сильнее выражена конвергенция, чем в связях колбочек, и это обеспечивает большую возможность суммации слабых стимулов. Поскольку у человека за цветовое зрение ответственны колбочки, при очень слабом освещении мы различаем лишь оттенки черного и серого. А так как в центральной ямке имеются в основном колбочки, мы лучше воспринимаем слабый свет, попадающий на участки вне центральной ямки – туда, где популяция палочек больше. Например, небольшая звездочка на небе кажется нам ярче, если ее изображение оказывается не в самой ямке, а в непосредственной близости от нее.

Исследования цветовосприятия у животных проводятся методом выработки дифференцировочных условных рефлексов – реакций на предметы, окрашенные в разные цвета, при обя­зательном выравнивании интенсивности яркости. Таким образом было установлено, что у собак и кошек цветное зрение раз­вито слабо, у мышей и кроликов отсутствует, лошади и крупный рогатый скот способны различать красный, зеленый, синий и желтый цвета; по-видимому, это относится и к свиньям.

Курсивом и особым форматированием выделен дополнительный материал.

В 1666г. Исаак Ньютон показал, что белый свет можно разложить на ряд цветных компонентов, пропустив его сквозь призму. Каждый такой спектральный цвет является монохроматическим, т.е. не способен больше разлагаться на другие цвета. К тому времени, однако, было уже известно, что художник может воспроизвести любой спектральный цвет (например, оранжевый), смешивая две чистые краски (например, красную и желтую), каждая из которых отражает свет, отличающийся по длине волны от данного спектрального цвета. Таким образом, открытый Ньютоном факт существования бесчисленного множества цветов и убежденность художников Возрождения, что любой цвет можно получить, комбинируя три основные краски – красную, желтую и синюю, казалось, противоречили друг другу.

Это противоречие в 1802г. разрешил Томас Юнг, предположивший, что рецепторы глаза избирательно воспринимают три основных цвета: красный, желтый и синий. Согласно его теории, цветовые рецепторы каждого типа в большей или меньшей степени возбуждаются светом с любой длиной волны. Иными словами, Юнг предположил, что ощущение «оранжевого цвета» возникает в результате одновременного возбуждения «красных» и «желтых» рецепторов. Таким образом, он сумел примирить факт бесконечного многообразия спектральных цветов с выводом о возможности их воспроизведения с помощью ограниченного числа красок.

Эту трихроматическую теорию Юнга подтвердили в XIX столетии результаты многочисленных психофизических исследований Джеймса Максвелла и Германа Гельмгольца, а также более поздние данные Уильяма Раштона.

Однако прямое доказательство существования трех типов цветовых рецепторов было получено лишь в 1964г., когда Уильям Б. Маркс (совместно с Эдвардом Ф. Мак Николом) изучил спектры поглощения одиночных колбочек из сетчатки золотой рыбки. Были обнаружены три типа колбочек, которые различались по спектральным пикам поглощения световых волн и соответствовали трем зрительным пигментам. Аналогичные исследования на сетчатке человека и обезьян дали схожие результаты.

Согласно одному из принципов фотохимии, свет, состоящий из волн разной длины, стимулирует фотохимические реакции пропорционально поглощению световых волн каждой длины. Если фотон не поглощается, то никакого влияния на молекулу пигмента он не оказывает. Поглощенный фотон передает часть своей энергии молекуле пигмента. Такой процесс переноса энергии означает, что волны разной длины будут возбуждать фоторецепторную клетку (что выражается в ее спектре действия) пропорционально тому, насколько эффективно пигмент этой клетки поглощает эти волны (т.е. в соответствии с ее спектром поглощения света).

Микроспектрофотометрическое изучение колбочек золотой рыбки позволило выявить три спектра поглощения, каждый из которых соответствует определенному зрительному пигменту с характерным для него максимумом. У человека кривая для соответствующего «длинноволнового» пигмента имеет максимум примерно при 560 нм, т. е. в желтой области спектра.

Существование трех типов колбочковых пигментов было подтверждено данными о существовании трех электрофизиологических типов пигмента со спектрами действия, соответствующими спектрам поглощения. Таким образом, в настоящее время трихроматическая теория Юнга может быть сформулирована с учетом данных о колбочковых пигментах.

Цветовое зрение было выявлено у представителей всех классов позвоночных. Трудно сделать какие-то обобщения о вкладе палочек и колбочек в цветовое зрение. Как правило, оно связано с наличием в сетчатке колбочек, однако в ряде случаев были обнаружены и «цветные» типы палочек. Например, у лягушки помимо колбочек имеются два типа палочек – «красные» (содержат родопсин и поглощают сине–зеленый свет) и «зеленые» (содержат пигмент, поглощающий свет синей части спектра). Из беспозвоночных способность различать цвета, в том числе и ультрафиолетовые лучи, хорошо развита у насекомых.

Задания:

1. Объясните, почему конвергенция должна повышать чувствительность глаза к слабому свету.

2. Объясните, почему ночью предметы видны лучше, если не смотреть прямо на них.

3. Объясните биологическую основу поговорки: «Ночью все кошки серые».

Строение палочек и колбочек

Палочки и колбочки весьма сходны по своему строению и состоят из четырех участков:

Наружный сегмент.

Это тот светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Весь наружный сегмент палочек заполнен мембранными дисками, образованными плазматической мембраной и отделившимися от нее. В палочках число этих дисков составляет 600-1000, они представляют собой уплощенные мембранные мешочки и уложены наподобие стопки монет. В колбочках мембранных дисков меньше, и они представляют собой не обособленные складки плазматической мембраны. На поверхности мембранных дисков и складок, обращенной к цитоплазме находятся светочувствительные пигменты.

Перетяжка .

Здесь наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой. Реснички содержат только 9 периферических дублетов микротрубочек: пара центральных микротрубочек, характерных для ресничек, отсутствует.

Внутренний сегмент.

Это область активного метаболизма; она заполнена митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и синтезе зрительного пигмента. В этом же участке расположено ядро.

Синаптическая область.

В этом участке клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой , что обеспечивает большую по сравнению с палочками остроту зрения. Горизонтальные и амакриновые клетки связывают вместе некоторое число палочек или колбочек . Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке; эти клетки, в частности, участвуют в латеральном торможении.

Латеральное торможение одна из форм фильтрации в зрительной системе служит для усиления контраста.

Поскольку изменения силы или качества стимула во времени или пространстве, как правило, имеют для животного большое значение, в процессе эволюции сформировались нервные механизмы для «подчеркивания» таких изменений. Об усилении зрительного контраста можно получить представление, бегло взглянув на рисунок:

Кажется, что каждая вертикальная полоса несколько светлее у ее границы с соседней более темной полосой. И наоборот, там, где она граничит с более светлой полосой, она кажется темнее. Это оптическая иллюзия; на самом деле полосы по всей ее ширине закрашены равномерно (при хорошем качестве печати). Чтобы в этом убедиться, достаточно закрыть бумагой все полосы, кроме одной.

Как возникает эта иллюзия? Сигнал, передаваемый фоторецептором (палочкой, или колбочкой), возбуждает амакриновую клетку, которая тормозит передачу сигналов от соседних рецепторов, тем самым увеличивая четкость изображения («гасит блики»).

Первое физиологическое объяснение латерального торможения появилось в результате изучения фасеточного глаза мечехвоста. Хотя организация такого глаза гораздо проще, чем организация сетчатки позвоночных, между отдельными омматидиями у мечехвоста также существуют взаимодействия. Впервые это было обнаружено в середине 1950–х годов в лаборатории Х. К. Хартлайна в Рокфеллеровском университете. Сначала в темной комнате регистрировали электрическую активность отдельного омматидия при стимуляции его ярким лучом света, направленным только на этот омматидий. Когда включали также общий свет в комнате, эта дополнительная стимуляция не только не повышала частоту разрядов передаваемых омматидием, но наоборот приводила к ее снижению. Впоследствии было установлено, что причиной торможения (снижения частоты импульсации) данного омматидия было возбуждение окружающих его омматидиев рассеянным комнатным светом. Этот феномен, получивший название латерального торможения, позднее наблюдался и в зрительной системе других животных, а также в ряде сенсорных систем иного типа.

Механизм фоторецепции в палочках

Зададимся вопросом: а откуда в составе сетчатки нейроны: биполяры, ганглиозные клетки, а также горизонтальные и амакриновые клетки?

Вспомним, что сетчатка развивается как вырост переднего мозга. Следовательно – это нервная ткань. Парадоксально, но палочки и колбочки – это тоже нейроны, правда, видоизмененные. Причем, не просто нейроны, а спонтанно активные: без света их мембрана деполяризована, и они секретируют медиаторы, а свет вызывает торможение и гиперполяризацию мембраны! На примере палочек попытаемся разобраться, как это происходит.

Палочки содержат светочувствительный пигмент родопсин, находящийся на наружной поверхности мембранных дисков. Родопсин, или зрительный пурпур, представляет собой сложную молекулу, образующуюся в результате обратимого связывания белка опсина с небольшой молекулой поглощающего свет каротиноида – ретиналя (альдегидной формой витамина А – ретинола). Опсин может существовать в виде двух изомеров. Пока опсин связан с ретиналем, он существует в виде химически неактивного изомера, поскольку ретиналь, занимая определенный участок на поверхности его молекулы, блокирует реакционно-способные группы атомов.

Под воздействием света родопсин «выцветает» – разрушается на опсин и ретиналь. Этот процесс обратим. Обратный процесс лежит в основе темновой адаптации . В полной темноте требуется около 30 мин, чтобы весь родопсин был ресинтезирован и глаза (точнее – палочки) приобрели максимальную чувствительность.

Установлено, что даже один фотон способен вызывать выцветание родопсина. Освободившийся опсин изменяет свою конформацию, становится реакционно-способным и запускает каскад процессов. Рассмотрим эту цепь взаимообусловленных процессов последовательно.

В темноте:

1) родопсин в целости и сохранности, неактивен ;

2) в цитоплазме фоторецепторов работает фермент (гуанилатциклаза ), превращающий один из нуклеотидов – гуанилат (гуанозинмонофосфорная кислота – ГМФ) из линейной в циклическую форму – цГМФ (ГМФ → цГМФ) ;

3) цГМФ ответственен за поддержание открытого состояния Na + -каналов плазмалеммы фоторецепторов (цГМФ-зависимые Na + -каналы);

4) Na + -ионы свободно поступают в клетку – мембрана деполяризована, клетка в состоянии возбуждения ;

5) В состоянии возбуждения фоторецепторы секретируют медиатор в синаптическую щель.

На свету:

1) Поглощение света родопсином вызывает его выцветание , опсин изменяет свою конформацию и приобретает активность.

2) Появление активной формы опсина провоцирует активацию регуляторного G-белка (этот связанный с мембраной белок служит регуляторным агентом в клетках самого разного типа).

3) Активированный G-белок в свою очередь активирует в цитоплазме наружного сегмента фермент – фосфодиэстеразу . Все эти процессы протекают в плоскости мембраны диска.

4) Активированная фосфодиэстераза превращает в цитоплазме циклический гуанозинмонофосфат в обычную линейную форму (цГМФ → ГМФ) .

5) Уменьшение концентрации cGMP в цитоплазме приводит к закрытию Na + -каналов , пропускающих темновой ток, и мембрана гиперполяризуется .

6) В гиперполяризованном состоянии клетка не секретирует медиаторы .

Когда снова наступает темнота, под действием уже упоминавшейся гуанилатциклазы – происходит регенерация цГМФ. Повышение уровня цГМФ ведет к открытию каналов, и рецепторный ток восстанавливается до своего полного «темнового» уровня.

Модель фотопреобразования в палочке позвоночного.

Фотоизомеризация родопсина (Ро) приводит к активации G-белка, а он в свою очередь активирует фосфодиэстеразу (ФДЭ). Последняя затем гидролизует цГМФ в линейный ГМФ. Поскольку цГМФ поддерживает Na + -каналы в темноте открытыми, превращение на свету цГМФ в ГМФ вызывает закрытие этих каналов и уменьшение темнового тока. Сигнал об этом событии передается на пресинаптическую терминаль у основания внутреннего сегмента в результате распространения возникающего гиперполяризационного потенциала.

Таким образом, то, что происходит в фоторецепторах, прямо противоположно тому, что обычно наблюдается в других рецепторных клетках, где раздражение вызывает деполяризацию, а не гиперполяризацию. Гиперполяризация замедляет высвобождение из палочек возбуждающего медиатора, который в темноте выделяется в наибольшем количестве.

Столь сложный каскад процессов необходим для усиления сигнала. Как уже говорилось, поглощение даже одного фотона может быть зарегистрировано на выходе палочки. Фотоизомеризация одной молекулы фотопигмента вызывает лавинообразный каскад реакций, каждая из которых во много раз усиливает эффект предыдущей. Так, если одна молекула фотопигмента активирует 10 молекул G-белка, одна молекула G-белка активирует 10 молекул фосфодиэстеразы, а каждая молекула фосфодиэстеразы в свою очередь гидролизует 10 молекул цГМФ, фотоизомеризация одной молекулы пигмента сможет вывести из строя 1000 молекул цГМФ. Из этих произвольных, но скорее заниженных цифр нетрудно понять, как может усиливаться сенсорный сигнал с помощью каскада ферментативных реакций.

Все это позволяет объяснить ряд явлений, бывших ранее загадочными.

Во-первых, давно известно, что человек, адаптировавшийся к полной темноте, способен увидеть такую слабую вспышку света, при которой ни один рецептор не может получить более одного фотона. Как показывают расчеты, для ощу­щения вспышки нужно, чтобы в короткий промежуток времени около шести близко расположенных палочек были стимулированы фотонами. Теперь ста­новится понятно, как одиночный фотон может возбудить палочку и заставить ее генерировать сигнал достаточной силы.

Во-вторых, мы теперь можем объяснить неспособность палочек реагиро­вать на изменения освещенности, если свет уже достаточно ярок. По-видимо­му, чувствительность палочек столь высока, что при сильной освещенности, например при солнечном свете, все натриевые поры закрыты, и дальнейшее усиление света может не давать никакого дополнительного эффекта. Тогда говорят, что палочки насыщены.

Задание:

Один из законов теоретической биологии – закон органической целесообразности или закон Аристотеля – в настоящее время нашел объяснение в учении Дарвина о твор­ческой роли естественного отбора, проявляющейся в адаптивном характере биологической эволюции. Постарайтесь объяснить, в чем заключается адаптивность спонтанной активности фоторецепторов в темноте, учитывая, что на синтез и секрецию медиаторов затрачивается много энергии (АТФ).

Зрение - это один из способов познавать окружающий мир и ориентироваться в пространстве. Несмотря на то что другие органы чувств тоже очень важны, с помощью глаз человек воспринимает около 90% всей информации, поступающей из окружающей среды. Благодаря способности видеть то, что находится вокруг нас, мы можем судить о происходящих событиях, отличать предметы друг от друга, а также заметить угрожающие факторы. Глаза человека устроены так, что помимо самих объектов, они различают ещё и цвета, в которые окрашен наш мир. За это отвечают специальные микроскопические клетки - палочки и колбочки, которые присутствуют в сетчатке каждого из нас. Благодаря им воспринятая нами информация о виде окружающего передаётся в головной мозг.

Строение глаза: схема

Несмотря на то что глаз занимает так мало места, он содержит множество анатомических структур, благодаря которым мы имеем способность видеть. Орган зрения практически напрямую связан с головным мозгом, и с помощью специального исследования офтальмологи видят пересечение зрительного нерва. имеет форму шара и располагается в специальной выемке - орбите, которую образуют кости черепа. Чтобы понять, для чего нужны многочисленные структуры органа зрения, необходимо знать строение глаза. Схема показывает, что глаз состоит таких образований, как хрусталик, передняя и задняя камеры, зрительный нерв и оболочки. Снаружи орган зрения покрывает склера - защитный каркас глаза.

Оболочки глаза

Склера выполняет функцию защиты глазного яблока от повреждений. Она является наружной оболочкой и занимает около 5/6 поверхности органа зрения. Часть склеры, которая находится снаружи и выходит непосредственно к окружающей среде, называется роговицей. Ей присущи свойства, благодаря которым мы имеем способность чётко видеть окружающий мир. Основные из них - это прозрачность, зеркальность, влажность, гладкость и способность пропускать и преломлять лучи. Остальная часть наружной оболочки глаза - склера - состоит из плотной соединительнотканной основы. Под ней находится следующий слой - сосудистый. Средняя оболочка представлена тремя образованиями, расположенными последовательно: радужка, и хореоидея. Помимо этого, сосудистый слой включает зрачок. Он представляет собой небольшое отверстие, не покрытое радужной оболочкой. Каждое из этих образований имеет собственную функцию, которая необходима для обеспечения зрения. Последний слой - это сетчатая оболочка глаза. Она контактирует непосредственно с головным мозгом. Строение сетчатки глаза очень сложно. Это связано с тем, что она считается самой важной оболочкой органа зрения.

Строение сетчатки глаза

Внутренняя оболочка органа зрения является составляющей частью мозгового вещества. Она представлена слоями нейронов, которые устилают глаз изнутри. Благодаря сетчатой оболочке мы получаем изображение всего, что находится вокруг нас. На ней фокусируются все преломлённые лучи и составляются в чёткий предмет. сетчатки переходят в зрительный нерв, по волокнам которого информация достигает головного мозга. На внутренней оболочке глаза имеется небольшое пятно, которое находится в центре и обладает наибольшей способностью к видению. Эта часть называется макулой. В этом месте располагаются зрительные клетки - палочки и колбочки глаза. Они обеспечивают нам как дневное, так и ночное видение окружающего мира.

Функции палочек и колбочек

Эти клетки расположены на глаза и необходимы для того, чтобы видеть. Палочки и колбочки являются преобразователями чёрно-белого и цветного зрения. Оба вида клеток выступают в качестве светочувствительных рецепторов глаза. Колбочки названы так из-за своей конической формы, они являются связующим звеном между сетчатой оболочкой и центральной нервной системой. Основная их функция - это преобразование световых ощущений, получаемых из внешней среды, в электрические сигналы (импульсы), обрабатываемые головным мозгом. Специфичность к распознаванию дневного света принадлежит колбочкам благодаря содержащемуся в них пигменту - йодопсину. Это вещество имеет несколько видов клеток, которые воспринимают различные части спектра. Палочки являются более чувствительными к свету, поэтому их основная функция сложнее - обеспечение видимости в сумерках. Они тоже содержат пигментную основу - вещество родопсин, которое обесцвечивается при попадании солнечных лучей.

Строение палочек и колбочек

Своё название эти клетки получили благодаря своей форме - цилиндрической и конической. Палочки, в отличие от колбочек, располагаются больше по периферии сетчатки и практически отсутствуют в макуле. Это связано с их функцией - обеспечением ночного видения, а также периферических полей зрения. Оба типа клеток имеют схожее строение и состоят из 4 частей:


Количество светочувствительных рецепторов на сетчатке сильно различается. Палочковые клетки составляют около 130 миллионов. Колбочки сетчатки значительно уступают им в количестве, в среднем их насчитывается примерно 7 млн.

Особенности передачи световых импульсов

Палочки и колбочки способны воспринимать световой поток и передавать его в ЦНС. Оба типа клеток способны работать в дневное время. Отличием является то, что светочувствительность колбочек гораздо выше, чем палочек. Передача полученных сигналов осуществляется благодаря интернейронам, к каждому из которых присоединяется несколько рецепторов. Объединения сразу нескольких палочковых клеток делают чувствительность органа зрения значительно большей. Такое явление получило название «конвергенция». Она обеспечивает нам обзор сразу нескольких а также способность улавливать различные движения, происходящие вокруг нас.

Способность к восприятию цветов

Оба вида рецепторов сетчатки необходимы не только, чтобы различать дневное и сумеречное зрение, но и определять цветные картинки. Строение глаза человека позволяет многое: воспринимать большую площадь окружающей среды, видеть в любое время суток. Кроме того, мы имеем одну из интересных способностей - бинокулярное зрение, позволяющее значительно расширить обзор. Палочки и колбочки участвуют в восприятии практически всего цветового спектра, благодаря чему люди, в отличие от животных, различают все краски этого мира. Цветное зрение в большей степени обеспечивают колбочки, которые бывают 3-х видов (коротко-, средне и длинноволновые). Тем не менее палочки тоже имеют способность к восприятию небольшой части спектра.

З дравствуйте, уважаемые читатели! Все мы наслышаны о том, что здоровье глаз следует беречь смолоду, потому что утраченное зрение не всегда можно вернуть. А задумывались ли вы когда-либо о том, как устроен глаз? Если мы будем это знать, то нам легче будет разобраться в том, какие процессы обеспечивают зрительное восприятие окружающего мира.

Человеческий глаз имеет сложное строение. Пожалуй, самый загадочный и сложный элемент – сетчатка. Это тоненький слой, состоящий из нервной ткани и сосудов. Но именно на него возложена важнейшая функция по переработке полученной глазом информации в нервные импульсы, позволяющие мозгу создавать цветную объемную картинку.

Сегодня мы поговорим о рецепторах нервной ткани сетчатки – а именно о палочках. Какова светочувствительность у палочек рецепторов сетчатки глаза и что позволяет нам видеть в темноте?

Палочки и колбочки

Оба этих элемента с забавными названиями – фоторецепторы, дающие изображение, фиксируемое хрусталиком и участками роговицы.

И тех, и других очень много в глазу человека. Колбочек (они похожи на крошечные кувшинчики) – около 7 млн, а палочек («цилиндриков») еще больше – до 120 млн! Разумеется, размеры их ничтожно малы и насчитывают доли миллиметров (мкм). Длина одной палочки – 60 мкм. Колбочки еще меньше – 50 мкм.

Палочки получили свое название благодаря форме: они напоминают микроскопические цилиндрики.

Они состоят из:

  • мембранных дисков;
  • нервной ткани;
  • митохондрий.

А еще они обеспечены ресничками. Особый пигмент – белок родопсин – дает возможность клеткам «чувствовать» свет.

Родопсин (это белок плюс желтый пигмент) реагирует на луч света так: под действием световых импульсов он разлагается, таким образом вызывая раздражение зрительного нерва. Надо сказать, восприимчивость «цилиндриков» потрясающа: они улавливают информацию даже от 2 фотонов!

Различия между фоторецепторами глаза

Различия начинаются уже с места расположения. «Кувшинчики» «теснятся» ближе к центру. Они «отвечают» за центральное зрение. В центре сетчатки, в так называемом «желтом пятне», их особенно много.

Плотность скопления «цилиндриков», напротив, выше к периферии глаза.

А еще можно отметить следующие особенности:

  • колбочки содержат фотопигмент в меньшем количестве, нежели палочки;
  • общее число «цилиндриков» в 2 десятка раз больше;
  • палочки способны воспринять любой свет – рассеянный и прямой; а колбочки – исключительно прямой;
  • с помощью клеток, находящихся на периферии, мы воспринимаем черный и белый цвета (они ахроматичны);
  • с помощью собирающихся в центре – все цвета и оттенки (они хроматичны).

Каждый из нас способен благодаря «кувшинчикам» видеть до тысячи оттенков. А глаз художника еще более чувствителен: он видит даже до миллиона оттенков цветов!

Интересный факт: для того, чтобы осуществить передачу импульсов, нескольким палочкам требуется всего один нейрон. Колбочки «требовательнее»: для каждой нужен свой нейрон.

«Цилиндрики» отличаются высокой чувствительностью, «кувшинчикам» нужны более сильные световые импульсы, чтобы они могли их воспринимать и передавать.

По сути, благодаря им мы можем видеть в темноте. В условиях сниженной освещенности (поздно вечером, ночью) колбочки не могут «работать». Зато в полную силу начинают действовать палочки. А поскольку они расположены на периферии, в темноте мы лучше улавливаем движения не прямо перед нами, а по бокам.


Да, и еще один момент: палочки реагируют быстрее.

Возьмите на заметку: отправившись куда-либо в темноте, не пытайтесь пристально вглядываться в область прямо перед глазами. Вы все равно ничего не увидите, ведь «кувшинчики», находящиеся в центре сетчатки, сейчас бессильны. А вот если вы «включите» боковое зрение, то сможете гораздо лучше ориентироваться. Это «работают» «цилиндрики».

Несмотря на существенную разницу в выполнении поставленных природой задач, фоторецепторы нельзя рассматривать отдельно друг от друга. Лишь вместе они дают единую целостную картину.

Поглощая кванты света, клетки преобразуют энергию в нервный импульс. Он поступает в головной мозг. Результат – мы видим мир!

Почему кошки лучше нас видят в темноте

Теперь, изучив в общих чертах строение и функции фоторецепторов, мы можем дать ответ на вопрос, почему наши усатые питомцы гораздо лучше нас ориентируются в темноте.

Ларчик открывается просто: строение глаза этого млекопитающего похоже на человеческое. Но если у человека на 1 колбочку приходится около 4 палочек, то у кошки – 25! Неудивительно, что домашний хищник великолепно различает очертания предметов практически в полной тьме.


Палочки и колбочки – наши помощники

«Цилиндрики» и «кувшинчики» – удивительное изобретение природы. Если они функционируют правильно, человек хорошо видит на свету и может ориентироваться в темноте.

Если они перестают выполнять свои функции в полном объеме, наблюдаются:

  • световые блики перед глазами;
  • ухудшение видимости в темноте;
  • становятся уже поля зрения.

Со временем меняется в худшую сторону острота зрения. Дальтонизм, гемералопия (снижение ночного зрения), отслоение сетчатки – вот какие последствия влечет за собой нарушение работы фоторецепторов.

Но не будем заканчивать наш разговор на этой печальной ноте. Современная медицина научилась справляться с большинством заболеваний, которые раньше вызывали слепоту. От пациента требуется лишь ежегодное профилактическое обследование.

Нашли ли вы для себя пользу в нашей статье? Если у вас стало чуть меньше вопросов, связанных со строением и работой органов зрения, мы сможем полагать свою задачу выполненной. И еще: пожалуйста, делитесь полученной информацией со знакомыми, а нам можете присылать свои комментарии и замечания. Ждем откликов. Всегда рады вашим отзывам!

Палочки и колбочки - светочувствительные рецепторы глаза, называемые также фоторецепторами. Их основная задача - преобразование светового раздражения в нервное. То есть, именно они превращают световые лучи в электрические импульсы, поступающие в мозг по , которые после определенной обработки становятся воспринимаемыми нами изображениями. У каждого вида фоторецепторов своя собственная задача. Палочки отвечают за световосприятие в условиях низкого освещения (ночное зрение). На колбочках лежит ответственность за остроту зрения, а также цветовосприятие (зрение днем).

Палочки сетчатки глаза

Данные фоторецепторы имеют форму цилиндра, длина которого составляет примерно 0,06 мм, а диаметр около 0,002 мм. Таким образом, подобный цилиндр действительно весьма похож на палочку. Глаз здорового человека содержит примерно 115-120 млн. палочек.

Палочку глаза человека можно разделить на 4 сегментарные зоны:

1 - Наружная сегментарная зона (включает мембранные диски, содержащие родопсин),
2 - Связующая сегментарная зона (ресничка),

4 - Базальная сегментарная зона (нервное соединение).

Палочки в высшей степени светочувствительны. Так, для их реакции, достаточно энергии 1 фотона (мельчайшей, элементарной частицы света). Данный факт очень важен при ночном зрении, что позволяет видеть при низком освещении.

Палочки не могут различать цвета, это, в первую очередь, связано с присутствием в них только одного пигмента - родопсина. Пигмент родопсин, называемый иначе зрительным пурпуром, благодаря включенным группам белков (хромофорам и опсинам) имеет 2 максимума светопоглощения. Правда, один из максимумов существует за гранью света, видимого человеческим глазом (278 нм – область уф-излучения), поэтому, наверное стоит называть его максимумом волнопоглощения. Но, второй максимум виден глазу - он существует на отметке 498 нм, расположенной на границе зелёного и синего цветового спектра.

Достоверно известно, родопсин, присутствующий в палочках, реагирует на свет много медленнее, чем йодопсин, содержащийся в колбочках. Потому, для палочек характерна слабая реакция на динамику световых потоков, и кроме того, они плохо различают движения объектов. И острота зрения не является их прерогативой.

Колбочки сетчатки глаза

Эти фоторецепторы, также получили свое название благодаря характерной форме, схожей с формой лабораторных колб. Длина колбочки составляет приблизительно 0,05 мм, диаметр ее в наиболее узком месте равен примерно 0,001 мм, а в самом широком - 0,004. Сетчатка здорового взрослого человека содержит около 7 млн. колбочек.

Колбочки имеют меньшую чувствительность к свету. То есть для возбуждения их деятельности потребуется световой поток, который в десятки раз более интенсивен, чем для возбуждения работы палочек. Но колбочки обрабатывают световые потоки значительно интенсивнее палочек, поэтому они лучше воспринимают и их изменение (к примеру, лучше различают свет при движении объектов, в динамике относительно глаза). Кроме того, они более четко определяют изображения.

Колбочки человеческого глаза, также включают 4 сегментарные зоны:

1 - Наружная сегментарная зона (включает мембранные диски, содержащие йодопсин),
2 - Связующая сегментарная зона (перетяжка),
3 - Внутренняя сегментарная зона (включает митохондрии),
4 - Зона синаптического соединения или базальный сегмент.

Причина вышеописанных свойств колбочек - это содержание в них специфического пигмента йодопсина. Сегодня выделены и доказаны 2 вида данного пигмента: эритролаб (йодопсин, чувствительный к красному спектру и длинным L-волнам), а также хлоролаб (йодопсин, чувствительный к зеленому спектру и средним M-волнам). Пигмент, который чувствителен к синему спектру и коротким S-волнам, пока не найден, хотя название за ним уже закрепилось – цианолаб.

Подразделение колбочек по видам доминирования в них цветового пигмента (эритролаба, хлоролаба, цианолаба) обусловлено трехкомпонентной гипотезой зрения. Существует, однако, и другая теория зрения - нелинейная двухкомпонентная. Ее приверженцы считают, что все колбочки, включают в себя эритролаб, и хлоролаб одновременно, а потому способны воспринимать цвета и красного, и зеленого спектра. Роль цианолаба, при этом, выполняет выцветший родопсин палочек. Эту теорию подтверждают и примеры людей, страдающих , а именно невозможностью различать синюю часть спектра (тританопия). Они так же испытывают затруднения с сумеречным зрением (