Какой диапазон воспринимает ухо человека. Восприятие звуковых волн различной частоты и амплитуды

Рассмотрев теорию распространения и механизмы возникновения звуковых волн, целесообразно понять, каким образом звук "интерпретируется" или воспринимается человеком. За восприятие звуковых волн в человеческом организме отвечает парный орган - ухо. Человеческое ухо - весьма сложный орган, который отвечает за две функции: 1) воспринимает звуковые импульсы 2) выполняет роль вестибулярного аппарата всего человеческого организма, определяет положение тела в пространстве и даёт жизненно важную способность удерживать равновесие. Среднестатистическое человеческое ухо способно улавливать колебания 20 - 20000 Гц, однако бывают отклонения в большую или меньшую сторону. В идеале, слышимый частотный диапазон составляет 16 - 20000 Гц, что так же соответствует 16 м - 20 см длины волны. Ухо делится на три составляющие: внешнее, среднее и внутреннее ухо. Каждое из этих "отделов" выполняет свою собственную функцию, однако все три отдела тесно связаны друг с другом и фактически осуществляют передачу волны звуковых колебаний друг другу.

Внешнее (наружнее) ухо

Внешнее ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина - упругий хрящ сложной формы, покрытый кожей. В нижней части ушной раковины располагается мочка, которая состоит из жировой ткани и также покрыта кожей. Ушная раковина выполняет роль приёмника звуковых волн из окружающего пространства. Особая форма строения ушной раковины позволяет лучше улавливать звуки, в особенности звуки среднечастотного диапазона, отвечающего за передачу речевой информации. Этот факт во многом обусловлен эволюционной необходимостью, поскольку человек большую часть жизни проводит в устном общении с представителями своего вида. Ушная раковина человека практически неподвижна, в отличии от большого числа представителей животного вида, которые используют движения ушами для более точной настройки на источник звука.

Складки человеческой ушной раковины устроены таким образом, что вносят поправки (незначительные искажения) относительно вертикальной и горизонтальной локации источника звука в пространстве. Именно за счёт этой уникальной особенности человек способен достаточно чётко определять местоположение объекта в пространстве относительно него самого, ориентируясь только по звуку. Эта особенность так же хорошо известна под термином "локализация звука". Основная функция ушной раковины - уловить как можно больше звуков в слышимом диапазоне частот. Дальнейшая судьба "пойманых" звуковых волн решается в слуховом проходе, длина которого 25-30 мм. В нём хрящевая часть внешней ушной раковины переходит в костную, а кожная поверхность слухового прохода наделена сальными и серными железами. В конце слухового прохода располагается эластичная барабанная перепонка, до которой доходят колебания звуковых волн, вызывая тем самым её ответные колебания. Барабанная перепонка в свою очередь передаёт эти полученные вибрации в область среднего уха.

Среднее ухо

Колебания, переданные барабанной перепонкой, попадают в область среднего уха, называемой "барабанная область". Это область объёмом около одного кубического сантиметра, в которой расположены три слуховые косточки: молоточек, наковальня и стремечко. Именно эти "промежуточные" элементы выполняют важнейшую функцию: передача звуковых волн во внутреннее ухо и одновременное усиление. Слуховые косточки представляют собой чрезвычайно сложную цепочку передачи звучания. Все три косточки тесно соединены друг с другом, а так же с барабанной перепонкой, за счёт чего и происходит передача колебаний "по цепочке". На подходе к области внутреннего уха имеется окно преддверия, которое перекрывается основанием стремечка. Для выравнивания давления с двух сторон барабанной перепонки (например, в случае изменений внешнего давления), область среднего уха соединяется с носоглоткой посредством евстахиевой трубы. Всем нам хорошо знаком эффект закладывания ушей, который возникает именно по причине такой тонкой настройки. Из среднего уха звуковые колебания, уже усиленные, попадают в область внутреннего уха, наиболее сложную и чувствительную.

Внутреннее ухо

Наиболее сложную форму представляет внутреннее ухо, названное по этой причине лабиринтом. Костный лабиринт включает в себя: преддверие, улитку и полукружные каналы, а также вестибулярный аппарат , отвечающий за равновесие. Непосредственно к слуху в этой связке относится именно улитка. Улитка представляет собой спиралевидный перепончатый канал, заполненый лимфатической жидкостью. Внутри канал делится на две части ещё одной перепончатой перегородкой под названием "основная мембрана". Данная мембрана представляют собой волокна различной длины (общим количеством более 24000), натянутые как струны, каждая струна резонирует на свой определённый звук. Деление канала мембраной осуществляется на верхнюю и нижнюю лестницу, сообщающиеся у верхушки улитки. С противоположного конца канал соединяется с рецепторным аппаратом слухового анализатора, который покрыт мельчайшими волосковыми клетками. Этот аппарат слухового анализатора так же носит название "Кортиев орган". Когда колебания из среднего уха попадают в улитку, лимфатическая жидкость, заполняющая канал, также начинает вибрировать, передавая колебания основной мембране. В этот момент в действие вступает аппарат слухового анализатора, волосковые клетки которого, расположенные в несколько рядов, осуществляют превращение звуковых колебаний в электрические "нервные" импульсы, которые по слуховому нерву передаются в височную зону коры головного мозга. Таким сложным и витиеватым образом человек в конечном случае услышит искомый звук.

Особенности восприятия и формирования речи

Механизм речеобразования формировался у человека на протяжении всего эволюционного этапа. Смысл этой способности заключается в передачи вербальной и невербальной информации. Первая несёт в себе словесную и смысловую нагрузку, вторая отвечает за передачу эмоциональной составляющей. Процесс создания и восприятия речи включает в себя: формулировка сообщения; кодирование в элементы по правилам существующего языка; переходные нейромускульные действия; движения голосовых связок; излучение акустического сигнала; Далее в действие вступает слушатель, осуществляя: спектральный анализ полученного акустического сигнала и выделение акустических признаков в периферической слуховой системе, передача выделенных признаков по нейронным сетям, распознавание языкового кода (лингвистический анализ), понимание смысла сообщения.
Аппарат формирования речевых сигналов можно сравнить со сложным духовым инструментом, однако многогранность и гибкость настройки и возможности воспроизведения малейших тонкостей и деталей не имеет аналогов в природе. Голосообразующий механизм состоит из трёх неразрывных составляющих:

  1. Генератор - лёгкие в качестве резервуара воздушного объёма. В лёгких запасается энергия избыточного давления, далее через выводящий канал при помощи мускульной системы осуществляется вывод этой энергии через трахею, соединённой с гортанью. На этом этапе воздушная струя прерывается и видоизменяется;
  2. Вибратор - состоит из голосовых связок. Так же на поток воздействуют воздушные турбулентные струи (создают краевые тоны) и импульсные источники (взрывы);
  3. Резонатор - включает резонансные полости сложной геометрической формы (глотка, ротовая и носовая полости).

В совокупности индивидуального устройства данных элементов формируется неповторимый и индивидуальный тембр голоса каждого человека в отдельности.

Генерация энергии воздушного столба осуществляется в легких, которые создают определённый поток воздуха при вдохе и выдохе за счет разницы атмосферного и внутрилегочного давления. Процесс накопления энергии осуществляется посредством вдоха, процесс освобождения характеизуется выдохом. Происходит это за счет сжатия и расширения грудной клетки, которые осуществляются с помощью двух групп мышц: межреберных и диафрагмы, при глубоком усиленном дыхании и пении сокращаются также мышцы брюшного пресса, груди и шеи. При вдохе диафрагма сжимается и опускается вниз, сокращение наружных межреберных мышц поднимает ребра и отводит их в стороны, а грудину вперед. Увеличение грудной клетки приводит к падению давления внутри лёгких (по отношению к атмосферному), и это пространство стремительно заполняется воздухом. При выдохе соответственно происходит расслабление мускул и всё возвращается в прежнее состояние (грудная клетка возвращается в исходное состояние за счёт своей собственной тяжести, диафрагма поднимается, уменьшается объём ранее расширившихся легких, давление внутрилёгочное растет). Вдох можно описать как процесс, требующий затраты энергии (активный); выдох – процесс накопления энергии (пассивный). Управление процессом дыхания и формирования речи происходит бессознательно, но при пении постановка дыхания требует осознанного подхода и длительного дополнительного обучения.

Количество энергии, которое впоследствии расходуется на формирование речи и голоса, зависит от объема запасенного воздуха и от величины дополнительного давления в легких. Максимально развиваемое давление у тренированного оперного певца может достигать 100-112 дБ. Модуляция воздушного потока вибрацией голосовых связок и создание подглоточного избыточного давления, эти процессы совершаются в гортани, которая представляет собой своеобразный клапан, расположенный на конце трахеи. Клапан выполняет двойственную функцию: предохраняет лёгкие от попадания посторонних предметов и поддерживает высокое давление. Именно гортань выступает в качестве источника речи и пения. Гортань представляет собой совокупность хрящей, соединённых мышцами. Гортань имеет достаточно сложное строение, главным элементом которой являются пара голосовых связок. Именно голосовые связки - основной (но не единственный) источник голосообразования или "вибратор". Во время этого процесса голосовые связки приходят в движение, сопровождаемое трением. Для защиты от этого выделяется особая слизистая секреция, выполняющая роль смазки. Образование речевых звуков определяется колебаниями связок, что приводит к формированию потока воздуха, выдыхаемого из легких, к определённому виду амплитудной характеристики. Между голосовыми складками располагаются небольшие полости, выполняющие роль акустических фильтров и резонаторов тогда, когда это требуется.

Особенности слухового восприятия, безопасность прослушивания, слуховые пороги, адаптация, правильный уровень громкости

Как видно из описания строения человеческого уха, орган этот весьма нежный и достаточно сложный по строению. Принимая этот факт во внимание, нетрудно определить, что этот чрезвычайно тонкий и чувствительный аппарат имеет набор ограничений, порогов и т.д. Человеческая слуховая система приспособлена к восприятию тихих звуков, а так же звуков средней интенсивности. Длительное воздействие громких звуков влечёт за собой необратимые сдвиги слуховых порогов, а так же прочие проблемы со слухом, вплоть до полной глухоты. Степень повреждения прямопропорциональна времени воздействия в громкой среде. В этот момент так же вступает в силу механизм адаптации - т.е. под действием длительных громких звуков чувствительность постепенно снижается, ощущаемая громкость уменьшается, слух адаптируется.

Адаптация изначально стремится защитить органы слуха от слишком громких звуков, однако, именно влияние этого процесса чаще всего заставляет человека неконтролируемо прибавлять уровень громкости аудиосистемы. Защита реализуется благодаря работы механизма среднего и внутреннего уха: стремечко отводится от овального окна, тем самым предохраняя от излишне громких звуков. Но механизм защиты не идеален и имеет задержку по времени, срабатывая только через 30-40 мс после начала поступления звука, притом полная защита не достигается ещё при длительности 150 мс. Механизм защиты активизуруется, когда уровень громкости переходит уровень 85 Дб, притом сама защита до 20 Дб.
Наиболее опасным, в данном случае, можно считать явление "сдвига слухового порога", что обычно происходит на практике в результате длительного воздействия громких звуков выше 90 Дб. Процесс восстановления слуховой системы после такого вредного воздействия может длиться до 16 часов. Сдвиг порогов начинается уже с уровня интенсивности 75 Дб, и увеличивается пропорционально с повышением уровня сигнала.

При рассмотрении проблемы правильного уровня звуковой интенсивности хуже всего осознавать тот факт, что проблемы (приобретённые или врождённые), связанные со слухом, практически не поддаются лечению в наш век достаточно развитой медицины. Всё это должно наводить любого здравомыслящего человека на мысли о бережном отношении к своему слуху, если конечно планируется сохранить его первозданную целостность и способность слышать весь частотный диапазон как можно дольше. К счастью, всё не так страшно, как может показаться на первый взгляд, и соблюдая ряд мер предосторожности можно легко сохранить слух даже в старости. Прежде чем рассматривать эти меры, необходимо вспомнить про одну важную особенность слухового восприятия человека. Слуховой аппарат воспринимает звуки нелинейно. Заключается подобное явление в следующем: если представить какую-то одну частоту чистого тона, например 300 Гц, то нелинейность проявляется при возникновении в ушной раковине обертонов этой основной частоты по логарифмическому принципу (если основную частоту принять за f, то обертоны частоты будут 2f, 3f и т.д. по возрастающей). Эта нелинейность так же проще для восприятия и знакома многим под названием "нелинейные искажения" . Поскольку в первоначальном чистом тоне таких гармоник (обертонов) не возникает, получается, что ухо само по себе вносит свои поправки и призвуки в первоначальное звучание, но определить их можно только в качестве субъективных искажений. При уровне интенсивности ниже 40 дБ субъективные искажения не возникают. При увеличении интенсивности с 40 дБ уровень субъективных гармоник начинает нарастать, однако ещё на уровне 80-90 дБ их негативный вклад в звучание относительно невелик (поэтому данный уровень интенсивности условно можно считать своеобразной "золотой серединой" в музыкальной сфере).

Основываясь на этой информации, можно без труда вывести безопасный и приемлимый уровень громкости, который не навредит слуховым органам и при этом даст возможность услышать абсолютно все особенности и детали звучания, например в случае работы с "hi-fi" системой. Этот уровень "золотой середины" составляет примерно 85-90 дБ. Именно при такой интенсивности звука реально услышать всё то, что заложено в аудиотракте, при этом риск преждевременного повреждения и снижения слуха сводится к минимуму. Практически полностью безопасным можно считать уровень громкости 85 дБ. Чтобы разобраться, в чём заключается опасность громкого прослушивания и почему слишком низкий уровень громкости не позволяет услышать всех нюансов звучания, рассмотрим этот вопрос подробнее. Что касается низких уровней громкости, то отсутствие целесообразности (но чаще субъективного желания) прослушивания музыки на низких уровнях обуславливается следующими причинами:

  1. Нелинейность слухового восприятия человека;
  2. Особенности психоакустического восприятия, которые будут рассмотрены отдельно.

Нелинейность слухового восприятия, рассмотренная выше, оказывает существенное влияние на любой громкости ниже 80 дБ. На практике это выглядит следующим образом: если включить музыку на тихом уровне, например 40 дБ, то отчётливее всего будет слышно среднечастотный диапазон музыкальной композиции, будь то вокал исполнителя/исполнительницы или инструменты, играющие в этом диапазоне. В это же время будет ощущаться явная нехватка низких и высоких частот, обусловленная как раз нелинейностью восприятия а так же тем, что различные частоты звучат с разной громкостью. Таким образом очевидно, что для полноценного восприятия всей полноты картины, частотный уровень интенсивности необходимо максимально выровнять к единому значению. Несмотря на то, что даже на уровне громкости 85-90 дБ идеализированного выравнивания громкости разных частот не происходит, уровень становится приемлимым для нормального повседневного прослушивания. Чем ниже громкость в тоже время, тем отчётливей будет восприниматься на слух характерная нелинейность, а именно ощущение отсутствия должного количества высоких и низких частот. Вместе с этим получается, что при такой нелинейности нельзя говорить серьёзно о воспроизведении звучания "hi-fi" качества высокой точности, ибо точность передачи оригинальной звуковой картины будет крайне низкой в данной конкретной ситуации.

Если вникнуть в эти выводы, то становится понятно, почему на низком уровне громкости прослушивание музыки хоть и максимально безопасное с точки зрения здоровья, но крайне отрицательно ощущается на слух по причине создания явно неправдоподобных образов музыкальных инструментов и голоса, отсутствия масштабности звуковой сцены. В целом, тихое воспроизведение музыки можно использовать в качестве фонового сопровождения, но совершенно противопоказано проводить прослушивание высокого "hi-fi" качества на низкой громкости, по вышеуказанным причинам невозможности создания натуралистичных образов звуковой сцены, которая была сформирована звукорежиссёром в студии, на этапе звукозаписи. Но не только низкая громкость вводит определённые ограничения на восприятие конечного звучания, гораздо хуже ситуация обстоит с повышенной громкостью. Повредить слух и достаточно сильно понизить чувствительность можно и достаточно просто, если продолжительное время слушать музыку на уровнях выше 90 дБ. Эти данные основаны на большом количестве медицинских исследований, заключающие, что звук громкостью выше 90 дБ оказывает реальный и практически непоправимый вред здоровью. Механизм этого явления кроется в слуховом восприятии и особенностях строения уха. Когда звуковая волна интенсивностью выше 90 дБ попадает в слуховой канал, в дело вступают органы среднего уха, вызывая явление, называемое слуховой адаптацией.

Принцип происходящего в этом случае такой: стремечко отводится от овального окна и предохраняет внутреннее ухо от слишком громких звуков. Этот процесс носит название акустического рефлекса . На слух подобное воспринимается как кратковременное снижение чувствительности, что может быть знакомо каждому, кто хоть раз посещал рок-концерты в клубах, например. После такого концерта возникает кратковременное снижение чувствительности, которая по истечению некоторого периода времени восстанавливается на прежний уровень. Однако восстановление чувствительности будет далеко не всегда и напрямую зависит от возраста. За всем этим и кроется большая опасность громких прослушиваний музыки и других звуков, интенсивность которых превышает 90 дБ. Возникновение акустического рефлекса не единственная "видимая" опасность потери слуховой чувствительности. При длительном воздействии слишком громких звуков, волоски, расположенные в области внутреннего уха (которые реагируют на колебания), отклоняются очень сильно. В этом случае происходит эффект, что волосок, отвечающий за восприятие определённой частоты отклоняется под воздействием звуковых вибраций большой амплитуды. В определённый момент такой волосок может отклониться слишком сильно и обратно уже не вернуться. Это вызовет соответствующий эффект потери чувствительности на конкретной определённой частоте!

Самым страшным во всей этой ситуации является то, что болезни уха практически не поддаются лечению, даже самыми современными методами, известными медицине. Всё это наводит на определённые серьёзные выводы: звук выше 90 дБ опасен для здоровья и практически гарантированно вызовет преждевременную потерю слуха или существенное снижение чувствительности. Ещё неприятнее и то, что в игру со временем вступает ранее упомянутое свойство адаптации. Этот процесс у человеческих слуховых органов происходит практически незаметно, т.е. человек, медленно теряющий чувствительность, близко к 100% вероятности не заметит этого до момента, пока окружающие люди сами не обратят внимание на постоянные переспрашивания, вроде: "Что Вы только что сказали?". Вывод в итоге предельно простой: при прослушивании музыки жизненно важно не допускать уровней интенсивности звука выше 80-85 дБ! В этом же моменте кроется и положительная сторона: уровень громкости 80-85 дБ примерно соответствует уровню звукозаписи музыки в студийных условиях. Вот и возникает понятие "Золотой середины", выше которой лучше не подниматься, если вопросы здоровья имеют хоть какое-то значение.

Даже достаточно кратковременное прослушивание музыки на уровне 110-120 дБ может вызвать проблемы со слухом, например во время живого концерта. Очевидно, что избежать этого временами нельзя или очень трудно, но крайне важно стараться это делать для сохранения целостности слухового восприятия. Теоретически, кратковременное воздействие громких звуков (не превышающих 120 дБ), ещё до момента возникновения "слуховой утомляемости", не приводит к серьёзным негативным последствиям. Но на практике обычно встречаются случаи длительного воздействия звуком такой интенсивности. Люди оглушают сами себя, не осознавая всей степени опасности в автомобиле при прослушивании аудиосистемы, дома в аналогичных условиях, или в наушниках портативного плеера. Почему так происходит, и что вынуждает делать звук всё громче и громче? Ответов на этот вопрос два: 1) Влияние психоакустики, о которой будет рассказано отдельно; 2) Постоянная необходимость "перекричать" громкостью музыки какие-то внешние звуки. Первый аспект проблемы достаточно интересен, и будет детально рассмотрен далее, а вот вторая сторона проблемы больше наводит на негативные мысли и выводы об ошибочном понимании истинных основ правильного прослушивания звучания "hi-fi" класса.

Не вдаваясь в особенности, общий вывод о прослушивании музыки и правильной громкости звучит следующим образом: прослушивание музыки должно происходить при уровнях звуковой интенсивности не выше 90 дб, не ниже 80 дБ в помещении, в котором сильно заглушены или полностью отсутствуют посторонние звуки внешних источников (такие как: разговоры соседей и прочий шум, за стеной квартиры; шумы улицы и технические шумы в случае, если вы находитесь в салоне автомобиля, и т.д.). Хочется выделить раз и навсегда, что именно в случае соблюдения таких, вероятно жёстких требований, можно достичь долгожданного баланса громкости, которая не вызовет преждевременных нежелательных повреждений слуховых органов, а так же доставит истинное удовольствие от прослушивания любимых музыкальных произведений с мельчайшими деталями звучания на высоких и низких частотах и точностью, которую преследует само понятие "hi-fi" звучания.

Психоакустика и особенности восприятия

Чтобы наиболее полно ответить на некоторые важные вопросы, касающиеся конечного восприятия человеком звуковой информации, существует целый раздел науки, изучающий огромное многообразие подобных аспектов. Этот раздел именуется "психоакустикой". Дело в том, что слуховое восприятие не заканчивается только на работе слуховых органов. После непосредственного восприятия звука органом слуха (ухо), далее в действие вступает самый сложный и малоизученный механизм анализа полученной информации, за это всецело отвечает головной мозг человека, который устроен таким образом, что при работе генерирует волны определённой частоты, и они так же обозначаются в Герцах (Гц). Различные частоты мозговых волн соответствуют определённым состояниям человека. Таким образом получается, что прослушивание музыки способствует изменению настройки частоты мозга, и это важно учитывать при прослушивании музыкальных композиций. На основании этой теории существует так же метод звукотерапии путём прямого влияния на психическое состояние человека. Мозговые волны бывают пяти типов:

  1. Дельта-волны (волны ниже 4 Гц). Соответствует состоянию глубокого сна без сновидений, при этом полностью отсутствуют ощущения тела.
  2. Тета-волны (волны 4-7 Гц). Состояние сна или глубокой медитации.
  3. Альфа-волны (волны 7-13 Гц). Состояния расслабления и релаксации во время бодрствования, сонливость.
  4. Бета-волны (волны 13-40 Гц). Состояние активность, повседневного мышления и мыслительной деятельности, возбуждение и познание.
  5. Гамма-волны (волны выше 40 Гц). Состояние сильной умственной активности, страха, возбуждения и осознания.

Психоакустика, как раздел науки, ищет ответы на самые интересные вопросы, касающиеся конечного восприятия человеком звуковой информации. В процессе изучения этого процесса вскрывается огромное количество факторов, влияние которых неизменно происходит как в процессе прослушивания музыки, так и в любом другом случае обработки и анализа любой звуковой информации. Психоакуситка изучает практически всё многообразие возможных влияний, начиная с эмоционального и психического состояния человека в момент прослушивания, заканчивая особенностями строения голосовых связок (в случае, если речь идёт об особенностях восприятия всех тонкостей вокального исполнения) и механизма преобразования звука в электрические импульсы мозга. Наиболее интересные, а главное важные факторы (которые жизненно необходимо учитывать каждый раз при прослушивании любимых музыкальных композиций, а так же при построении профессиональной аудиосистемы) будут рассмотрены далее.

Понятие созвучности, музыкальной созвучности

Устройство человеческой слуховой системы уникально в первую очередь механизмом восприятия звука, нелинейностью слуховой системы, способностью группировать звуки по высоте с достаточно высокой степенью точности. Наиболее интересной особенностью восприятия можно отметить нелинейность слуховой системы, которая проявляется в виде возникновения дополнительных несуществующих (в основном тоне) гармоник, особенно часто проявляется у людей с музыкальным или абсолютным слухом. Если же подробнее остановится и проанализировать все тонкости восприятия музыкального звучания, то легко выделяется понятие "консонансности" и "диссонансности" различных аккордов и интервалов звучания. Понятие "консонанс" определяется как согласное (от французского слова "согласие") звучание, и соответственно наоборот, "диссонанс" - несогласное, нестройное звучание. Несмотря на многообразие различных трактовок этих понятий характеристики музыкальных интервалов, наиболее удобно использовать "музыкально-психологическую" расшифровку терминов: консонанс определяется и ощущается человеком как приятное и комфортное, мягкое звучание; диссонанс же можно охарактеризовать с другой стороны как звучание, вызывающее раздражение, беспокойство и напряжение. Подобная терминология носит слегка субьективный характер, а так же, за историю развития музыки совершенно различные интервалы принимались за "созвучные" и наоборот.

В наше время данные понятия так же сложно воспринимать однозначно, поскольку наблюдаются различия у людей с отличными музыкальными предпочтениями и вкусами, а также нет общепризнанного и согласованного понятия гармонии. Психоакустическая основа восприятия различных музыкальных интервалов в качестве консонансных или диссонансных напрямую зависит от понятия "критической полосы". Кртическая полоса - это определённая ширина полосы, внутри которой слуховые ощущения резко изменяются. Ширина критических полос с повышением частоты пропорционально расширяется. Поэтому, ощущение консонансов и диссонансов напрямую связано с наличием критических полос. Слуховой орган человека (ухо), как уже было сказано ранее, выполняет роль полосового фильтра на определённом этапе анализа звуковых волн. Эта роль отводится базилярной мембране, на которой располагается 24 критических полосы с частотнозависимой шириной.

Таким образом, созвучность и несогласованность (консонансность и диссонансность) напрямую зависит от разрешающей способности слуховой системы. Получается, что если два разных тона звучат в унисон или разница частот равна нулю, то это совершенный консонанс. Такой же консонанс возникает в случае, если разница частот будет больше, чем критическая полоса. Диссонанс же возникает лишь тогда, когда разница частот составляет от 5% до 50% от критической полосы. Наивысшая степень диссонанса в данном отрезке прослушивается, если разница составляет одну четверть от ширины критической полосы. На основании этого легко проанализировать любую сведённую музыкальную запись и сочетание инструментов на предмет созвучности или диссонансности звучания. Нетрудно догадаться, какую большую роль в этом случае играет звукорежиссёр, студия звукозаписи и прочие составляющие конечного цифрового или аналогового оригинала звуковой дорожки, и всё это ещё даже до попытки воспроизведения на звуковоспроизводящем оборудовании.

Локализация звука

Воспринимать всю полноту пространственной звуковой картины человеку помогает система бинаурального слуха и пространственной локализации. Этот механизм восприятия реализуется за счёт двух приёмников слуха и двух слуховых каналов. Звуковая информация, которая поступает по этим каналам, в последствии обрабатывается в переферической части слуховой системы и подвергается спектрально временному анализу. Далее, эта информация передаётся в высшие отделы головного мозга, где сравнивается разница левого и правого звукового сигнала, а так же формируется единый звуковой образ. Этот описанный механизм именуется бинауральным слухом . Благодаря этому, у человека имеются такие уникальные возможности:

1) локализация звуковых сигналов от одного или нескольких источников, при этом формируется пространственная картина восприятия звукового поля
2) разделение сигналов, приходящих от различных источников
3) выделение одних сигналов, на фоне других (например, выделение речи и голоса из шума или звучания инструментов)

Пространственную локализацию легко наблюдать на простом примере. На концерте, со сценой и некоторым количеством музыкантов на ней в определённом отдалении друг от друга, можно легко (при желании даже закрыв глаза) определить направление прихода звукового сигнала каждого инструмента, оценить глубину и пространственность звукового поля. Таким же образом ценится хорошая hi-fi система, способная достоверно "воспроизвести" подобные эффекты пространственности и локализации, тем самым фактически "обманув" мозг, заставив почувствовать полноценное присутствие на живом выступлении любимого исполнителя. Локализацию звукового источника обычно обуславливают три основных фактора: временной, интенсивностный и спектральный. Независимо от этих факторов, имеется ряд закономерностей, с помощью которых можно понять основы, касающиеся локализации звука.

Наибольший эффект локализации, воспринимаемый человеческими органами слуха, находится в области средних частот. В то же время, практически невозможно определить направление звуков частот выше 8000 Гц и ниже 150 Гц. Последний факт особенно широко используется в системах hi-fi и домашнего театра при выборе местоположения сабвуфера (низкочастотного звена), расположение которого в помещении ввиду отсутствия локализации частот ниже 150 Гц практически не имеет значения, и у слушателя в любом случае возникает целостный образ звуковой сцены. Точность локализации зависит от расположения источника излучения звуковых волн в пространстве. Таким образом, наибольшая точность локализации звуков отмечается в горизонтальной плоскости, достигая значения 3°. В вертикальной плоскости человеческая слуховая система гораздо хуже определяет направление источника, точность в этом случае составляет 10-15° (из-за специфического строения ушных раковин и сложной геометрии). Точность локализации слегка варьируется в зависимости от угла расположения излучающих звук объектов в пространстве углами относительно слушателя, а так же, на конечный эффект оказывает влияние степень дифракции звуковых волн головы слушателя. Следует так же заметить, что широкополосные сигналы локализуются лучше, чем узкополосный шум.

Гораздо интереснее обстоит дело с определением глубины направленного звука. Например, человек по звуку может определить расстояние до объекта, однако, происходит это в большей степени за счёт изменения звукового давления в пространстве. Обычно, чем дальше объект от слушателя, тем больше происходит ослабление звуковых волн в свободном пространстве (в помещении добавляется влияние отражённых звуковых волн). Таким образом можно заключить, что точность локализации выше в закрытом помещении именно за счёт возникновения ревербации. Отражённые волны, возникающие в закрытых помещениях, дают возможность появлению таких интересных эффектов, как расширение звуковой сцены, обволакивание и пр. Данные явления возможны именно за счёт восприимчивости трёхмерной локализации звуков. Основные зависимости, которые и определяют горизонтальную локализацию звука: 1) разница по времени прихода звуковой волны в левое и правое ухо; 2) разница в интенсивности, возникающая из-за дифракции на голове слушателя. Для определения глубины звука важна разница уровня звукового давления и разница спектрального состава. Локализация в вертикальной плоскости так же сильно зависима от дифракции в ушной раковине.

Сложнее обстоит дело с современными системами пространственного звучания на основе технологии dolby surround и аналогов. Казалось бы, принцип построения систем домашнего кинотеатра чётко регламентируют способ воссоздания достаточно натуралистичной пространственной картины 3D звучания с присущим объёмом и локализацией виртуальных источников в пространстве. Однако, не всё так тривиально, поскольку обычно не принимаются во внимание сами механизмы восприятия и локализации большого количества источников звука. Преобразование звука органами слуха предполагает процесс сложения сигналов разных источников, пришедших в разные уши. Притом, если фазовая структура разных звуков более менее синхронна, такой процесс на слух воспринимается как звук, исходящий от одного источника. Имеется ещё и целый ряд трудностей, включая особенности механизма локализации, затрудняющий точность определения направления источника в пространстве.

Ввиду вышесказанного, наиболее трудной задачей становится разделение звуков от разных источников, особенно, если эти разные источники проигрывают схожий амплитудно-частотный сигнал. А именно это и происходит на практике в любой современной системе пространственного звучания, и даже в обычной стереосистеме. Когда человек прослушивает большое количество звуков, исходящих от разных источников, сначала происходит определение принадлежности каждого конкретного звука тому источнику, который его создаёт (группировка по частоте, высоте, тембру). И только вторым этапом слух пытается локализовать источник. После этого приходящие звуки разделяются по потокам, основываясь на пространственных признаках (разница во времени поступления сигналов, разница по амплитуде). На основе полученной информации формируется более менее статичный и фиксированный слуховой образ, из которого которого возможно определить, откуда идёт каждый конкретный звук.

Очень удобно отследить данные процессы на примере обычной сцены, с фиксированно расположенными на ней музыкантами. При этом, очень интересно то, что если вокалист/исполнитель, занимая изначально определённую позицию на сцене начнёт плавно перемещаться по сцене в любом направлении, ранее сформированный слуховой образ не изменится! Определение направления звука, исходящего от вокалиста, останется субъективно прежним, как-буд-то он стоит на том же месте, на котором стоял до перемещения. Только в случае резкого изменения местоположения исполнителя на сцене произойдёт расщипление сформированного звукового образа. Помимо рассмотренных проблем и сложности процессов локализации звуков в пространстве, в случае с многоканальными системами пространственного звучания достаточно большую роль оказывает процесс ревербации в конечном помещении для прослушивания. Наиболее ярко эта зависимость наблюдается, когда большое число отражённых звуков приходит со всех сторон - точность локализации существенно ухудшается. Если же энергетическая насыщенность отражённых волн больше (преобладает) чем прямых звуков, критерий локализации в таком помещении становится крайне размытым, говорить о точности определения таких источников крайне затруднительно (если вообще возможно).

Однако, в сильно ревербирующем помещении локализация теоретически происходит, в случае широкополосных сигналов слух ориентируется по параметру разницы интенсивности. В этом случае определение направления осуществляется по высокочастотной составляющей спектра. В любом помещении точность локализации будет зависеть от времени прихода отражённых звуков после прямых звуков. При слишком малом интервале разрыва между этими звуковыми сигналами в помощь слуховой системе начинает работать "закон прямой волны". Суть этого явления: если звуки с коротким интервалом задержки по времени приходят с разных направлений, то локализация всего звука происходит по первому пришедшему звуку, т.е. слух игнорирует в какой-то степени отраженный звук, если он приходит через слишком короткий отрезок времени после прямого. Подобный эффект проявляется и тогда, когда происходит определение направления прихода звука в вертикальной плоскости, но в этом случае гораздо слабее (по причине того, что восприимчивость слуховой системы к локализации в вертикальной плоскости заметно хуже).

Суть эффекта предшествования гораздо глубже и имеет психологическую, нежели физиологическую природу. Было проведено большое количество экспериментов, на основании которых установлена зависимость. Возникает этот эффект преимущественно тогда, когда время появления эха, его амплитуда и направление совпадают с некоторым "ожиданием" слушателя от того, как акустика данного конкретного помещения формирует звуковой образ. Возможно, человек уже имел опыт прослушивания в данном помещении или аналогичных, что и формирует предрасположенность слуховой системы к возникновению "ожидаемого" эффекта предшествования. Чтобы обойти данные ограничения, присущие человеческому слуху, в случае с несколькими источниками звука используются различные уловки и хитрости, с помощью которых и формируется в конечном счёте более менее правдоподобная локализация музыкальных инструментов/других источников звука в пространстве. По большому счёту, воспроизведение стерео и многоканальных звуковых образов строится на большом обмане и создании слуховой иллюзии.

Когда две или большее число акустических систем (например, 5.1 или 7.1, или даже 9.1) воспроизводят звук из разных точек помещения, слушатель при этом слышит звуки, исходящие из несуществующих или мнимых источников, воспринимая определенную звуковую панораму. Возможность этого обмана заключается в биологических особенностях устройства организма человека. Скорее всего, человек не успел адаптироваться к распознаванию подобного обмана по причине того, что принципы "искусственного" звуковоспроизведения появились сравнительно недавно. Но, хоть и процесс создания мнимой локализации оказался возможным, реализация по сей день далека от совершенства. Дело в том, что слух действительно воспринимает источник звука там, где его на самом деле нет, но правильность и точность передачи звуковой информации (в частности тембра) оказывается под большим вопросом. Методом многочисленных опытов в реальных ревербационных помещениях и в заглушенных камерах было установлено, что тембр звуковых волн от реальных и мнимых источников отличается. В основном это сказывается на субъективном восприятии спектральной громкости, тембр в этом случае видоизменяется существенным и заметным образом (при сравнении с аналогичным звуком, воспроизведённом реальным источником).

В случае с многоканальными системами домашнего кинотеатра уровень искажений заметно выше, по нескольким причинам: 1) Много схожих по амплитудно-частотной и фазофой характеристике звуковых сигналов одновременно приходит с разных источников и направлений (включая переотражённые волны) на каждый ушной канал. Это приводит к увеличению искажений и появлению гребенчатой фильтрации. 2) Сильное разнесение громкоговорителей в пространстве (относительно друг друга, в многоканальных системах это расстояние может быть несколько метров и более) способствует росту тембровых искажений и окраске звука в области мнимого источника. В качестве итога можно сказать, что окрашивание тембра в системах многоканального и объёмного звучания на практике происходят по двум причинам: явление гребенчатой фильтрации и влияние ревербационных процессов конкретного помещения. В случае, если за воспроизведение звуковой информации отвечает более одного источника (это касается и стереосистемы с 2-умя источниками), неизбежно появление эффекта "гребенчатой фильтрации", вызванной разным временем прибытия звуковых волн на каждый слуховой канал. Особая неравномерность наблюдается в области верхней середины 1-4 кГц.

Сегодня мы разбираемся, как расшифровать аудиограмму. В этом нам помогает Светлана Леонидовна Коваленко — врач высшей квалификационной категории, главный детский сурдолог-оториноларинголог Краснодара, кандидат медицинских наук .

Краткое изложение

Статья получилось большой и подробной — чтобы понять, как расшифровать аудиограмму, надо сначала познакомиться с основными терминами аудиометрии и разобрать примеры. Если у вас нет времени долго читать и разбираться в деталях, в карточке ниже — краткое изложение статьи.

Аудиограмма — график слуховых ощущений пациента. Она помогает диагностировать нарушения слуха. На аудиограмме две оси: горизонтальная — частота (количество звуковых колебаний в секунду, выражается в герцах) и вертикальная — интенсивность звука (относительная величина, выражается в децибелах). На аудиограмме отмечается костная проводимость (звук, который в виде вибраций доходит до внутреннего уха через кости черепа) и воздушная проводимость (звук, который достигает внутреннего уха обычным путём — через наружное и среднее ухо).

При аудиометрии пациенту подают сигнал разной частоты и интенсивности и отмечают точками величину минимального звука, который слышат пациент. Каждая точка показывает минимальную интенсивность звука, при которой пациент слышит на конкретной частоте. Соединив точки, получаем график, а точнее, два — один для костного звукопроведения, другой — для воздушного.

Норма слуха — когда графики лежат в диапазоне от 0 до 25 дБ. Разница между графиком костного и воздушного звукопроведения называется костно-воздушным интервалом. Если график костного звукопроведения в норме, а график воздушного лежит ниже нормы (присутстувет костно-воздушный интервал), это показатель кондуктивной тугоухости. Если график костного звукопроведения повторяет график воздушного, и оба лежат ниже нормального диапазона, это говорит о сенсоневральной тугоухости. Если чётко определяется костно-воздушный интервал, и при этом оба графика показывают нарушения, значит, тугоухость смешанная.

Основные понятия аудиометрии

Чтобы понять, как расшифровать аудиограмму, сначала остановимся на некоторых терминах и самой методике аудиометрии.

У звука две основные физические характеристики: интенсивность и частота.

Интенсивность звука определяется силой звукового давления, которое у человека весьма вариабельно. Поэтому для удобства принято пользоваться относительными величинами, такими как децибелы (дБ) — это десятичная шкала логарифмов.

Частоту тона оценивают количеством звуковых колебаний в секунду и выражают в герцах (Гц). Условно диапазон звуковых частот делят на низкие — ниже 500Гц, средние (речевые) 500−4000Гц и высокие — 4000Гц и выше.

Аудиометрия — это измерение остроты слуха. Эта методика субъективна и требует обратной связи с пациентом. Исследующий (тот, кто проводит исследование) при помощи аудиометра подаёт сигнал, а исследуемый (слух которого исследуют) даёт знать, слышит он этот звук или нет. Чаще всего для этого он нажимает на кнопку, реже — поднимает руку или кивает, а дети складывают игрушки в корзину.

Существуют различные виды аудиометрии: тональная пороговая, надпороговая и речевая. На практике наиболее часто применяется тональная пороговая аудиометрия, которая определяет минимальный порог слуха (самый тихий звук, который слышит человек, измеряемый в децибелах (дБ)) на различных частотах (как правило, в диапазоне 125Гц — 8000 Гц, реже до 12 500 и даже до 20 000 Гц). Эти данные отмечаются на специальном бланке.

Аудиограмма — график слуховых ощущений пациента. Эти ощущения могут зависеть как от самого человека, его общего состояния, артериального и внутричерепного давления, настроения и т. д. , так и от внешних факторов — атмосферных явлений, шума в помещении, отвлекающих моментов и т. д.

Как строится график аудиограммы

Для каждого уха раздельно измеряют воздушную проводимость (через наушники) и костную проводимость (через костный вибратор, который располагают позади уха).

Воздушная проводимость — это непосредственно слух пациента, а костная проводимость — слух человека, исключая звукопроводящую систему (наружное и среднее ухо), её ещё называют запасом улитки (внутреннего уха).

Костная проводимость обусловлена тем, что кости черепа улавливают звуковые вибрации, которые поступают ко внутреннему уху. Таким образом, если имеется препятствие в наружном и среднем ухе (любые патологические состояния), то звуковая волна достигает улитки благодаря костной проводимости.

Бланк аудиограммы

На бланке аудиограммы чаще всего правое и левое ухо изображены раздельно и подписаны (чаще всего правое ухо слева, а левое ухо справа), как на рисунках 2 и 3. Иногда оба уха отмечаются на одном бланке, их различают либо цветом (правое ухо всегда красным, а левое — синим), либо символами (правое кругом или квадратом (0---0---0), а левое — крестом (х---х---х)). Воздушную проводимость всегда отмечают сплошной линией, а костную — прерывистой.

По вертикали отмечают уровень слуха (интенсивность стимула) в децибелах (дБ) с шагом в 5 или 10 дБ, сверху вниз, начиная от −5 или −10, а заканчивая 100 дБ, реже 110 дБ, 120 дБ. По горизонтали отмечаются частоты, слева направо, начиная от 125 Гц, далее 250 Гц, 500Гц, 1000Гц (1кГц), 2000Гц (2кГц), 4000Гц (4кГц), 6000Гц (6кГц), 8000Гц (8кГц) и т. д. , могут быть некоторые вариации. На каждой частоте отмечается уровень слуха в децибелах, потом точки соединяют, получается график. Чем выше график, тем лучше слух.


Как расшифровать аудиограмму

При обследовании больного в первую очередь необходимо определить топику (уровень) поражения и степень слуховых нарушений. Правильно выполненная аудиометрия даёт ответ на оба этих вопроса.

Патология слуха может быть на уровне проведения звуковой волны (за этот механизм отвечает наружное и среднее ухо), такую тугоухость называют проводниковой или кондуктивной; на уровне внутреннего уха (рецепторный аппарат улитки), данная тугоухость является сенсоневральной (нейросенсорной), иногда бывает сочетанное поражение, такую тугоухость называют смешанной. Крайне редко встречаются нарушения на уровне слуховых проводящих путей и коры головного мозга, тогда говорят о ретрокохлеарной тугоухости.

Аудиограммы (графики) могут быть восходящими (чаще всего при кондуктивной тугоухости), нисходящими (чаще при сенсоневральной тугоухости), горизонтальными (плоскими), а также иной конфигурации. Пространство между графиком костной проводимости и графиком воздушной — это костно-воздушный интервал. По нему определяют, с каким видом тугоухости мы имеем дело: нейросенсорной, кондуктивной или смешанной.

Если график аудиограммы лежит в диапазоне от 0 до 25 дБ по всем исследуемым частотам, то считается, что у человека нормальный слух. Если график аудиограммы спускается ниже, то это патология. Тяжесть патологии определяется степенью тугоухости. Существуют различные расчёты степени тугоухости. Однако наиболее широкое распространение получила международная классификация тугоухости, по которой рассчитывается среднеарифметическая потеря слуха на 4 основных частотах (наиболее важных для восприятия речи): 500 Гц, 1000 Гц, 2000 Гц и 4000 Гц.

1 степень тугоухости — нарушение в пределах 26−40 дБ,
2 степень — нарушение в диапазоне 41−55 дБ,
3 степень — нарушение 56−70 дБ,
4 степень — 71−90 дБ и свыше 91 дБ — зона глухоты.

1 степень определяется как лёгкая, 2 — среднетяжёлая, 3 и 4 — тяжёлая, а глухота — крайне тяжёлая.

Если костное звукопроведение в норме (0−25дБ), а воздушное проведение нарушено, это показатель кондуктивной тугоухости . В случаях, когда нарушено и костное, и воздушное звукопроведение, но есть костно-воздушный интервал, у пациента смешанный тип тугоухости (нарушения и в среднем и во внутреннем ухе). Если костное звукопроведение повторяет воздушное, то это сенсоневральная тугоухость . Однако при определении костной звукопроводимости необходимо помнить, что низкие частоты (125Гц, 250Гц) дают эффект вибрации и исследуемый может принимать это ощущение за слуховое. Поэтому нужно критически относиться к костно-воздушному интервалу на данных частотах, особенно при тяжёлых степенях тугоухости (3−4 степени и глухоте).

Кондуктивная тугоухость редко бывает тяжелой степени, чаще 1−2 степень тугоухости. Исключения составляют хронические воспалительные заболевания среднего уха, после хирургических вмешательствах на среднем ухе и т. д. , врожденные аномалии развития наружного и среднего уха (микроотии, атрезии наружных слуховых проходов и т. д.), а также при отосклерозе.

Рисунок 1 — пример нормальной аудиограммы: воздушная и костная проводимость в пределах 25 дБ во всём диапазоне исследуемых частот с обеих сторон .

На рисунках 2 и 3 представлены типичные примеры кондуктивной тугоухости: костное звукопроведение в пределах нормы (0−25дБ), а воздушное нарушено, имеется костно-воздушный интервал.

Рис. 2. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Чтобы рассчитать степень тугоухости, складываем 4 величины — интенсивность звука на 500, 1000, 2000 и 4000 Гц и делим на 4, чтобы получить среднее арифметическое. Получаем справа: на 500Гц — 40дБ, 1000Гц — 40 дБ, 2000Гц — 40 дБ, 4000Гц — 45дБ, в сумме — 165 дБ. Делим на 4, равно 41,25 дБ. Согласно международной классификации, это 2 степень тугоухости. Определяем тугоухость слева: 500Гц — 40дБ, 1000Гц —— 40 дБ, 2000Гц — 40 дБ, 4000Гц — 30дБ = 150, разделив на 4, получаем 37,5 дБ, что соответствует 1 степени тугоухости. По данной аудиограмме можно сделать следующее заключение: двусторонняя кондуктивная тугоухость справа 2 степени, слева 1 степени.

Рис. 3. Аудиограмма пациента с двусторонней кондуктивной тугоухостью .

Аналогичную операцию выполняем для рисунка 3. Степень тугоухости справа: 40+40+30+20=130; 130:4=32,5, т. е. 1 степень тугоухости. Слева соответственно: 45+45+40+20=150; 150:4=37,5, что также является 1 степенью. Таким образом, можно сделать следующее заключение: двусторонняя кондуктивная тугоухость 1 степени.

Примерами сенсоневральной тугоухости являются рисунки 4 и 5. На них видно, что костная проводимость повторяет воздушную. При этом на рисунке 4 слух на правом ухе в норме (в пределах 25 дБ), а слева имеется сенсоневральная тугоухость, с преимущественным поражением высоких частот.

Рис. 4. Аудиограмма пациента с сенсоневральной тугоухостью слева, правое ухо в норме .

Степень тугоухости рассчитываем для левого уха: 20+30+40+55=145; 145:4=36,25, что соответствует 1 степени тугоухости. Заключение: левосторонняя сенсоневральная тугоухость 1 степени.

Рис. 5. Аудиограмма пациента с двусторонней сенсоневральной тугоухостью .

Для данной аудиограммы показательным является отсутствие костного проведения слева. Это объясняется ограниченностью приборов (максимальная интенсивность костного вибратора 45−70 дБ). Рассчитываем степень тугоухости: справа: 20+25+40+50=135; 135:4=33,75, что соответствует 1 степени тугоухости; слева — 90+90+95+100=375; 375:4=93,75, что соответствует глухоте. Заключение: двусторонняя сенсоневральная тугоухость справа 1 степени, слева глухота.

Аудиограмма при смешанной тугоухости отображена на рисунке 6.

Рисунок 6. Имеются нарушения как воздушного, так и костного звукопроведения. Чётко определяется костно-воздушный интервал .

Степень тугоухости рассчитываем согласно международной классификации, которая составляет для правого уха среднеарифметическое значение 31,25дБ, а для левого — 36,25дБ, что соответствует 1 степени тугоухости. Заключение: двусторонняя тугоухость 1 степени по смешанному типу.

Сделали аудиограмму. Что потом?

В заключении следует отметить, что аудиометрия не является единственным методом исследования слуха. Как правило, для установления окончательного диагноза необходимо комплексное аудиологическое исследование, которое помимо аудиометрии включает акустическую импедансометрию, отоакустическую эмиссию, слуховые вызванные потенциалы, исследование слуха при помощи шёпотной и разговорной речи. Также в ряде случаев аудиологическое обследование необходимо дополнять другими методами исследования, а также привлечением специалистов смежных специальностей.

После диагностики слуховых нарушений необходимо решать вопросы лечения, профилактики и реабилитации больных с тугоухостью.

Наиболее перспективно лечение при кондуктивной тугоухости. Выбор направления лечения: медикаментозного, физиотерапевтического или хирургического определяется лечащим врачом. В случае сенсоневральной тугоухости улучшение или восстановление слуха возможно только при острой её форме (при продолжительности тугоухости не более 1 месяца).

В случаях стойкой необратимой потери слуха врач определяет методы реабилитации: слухопротезирование или кохлеарную имплантацию. Такие пациенты должны не реже 2 раз в год наблюдаться у сурдолога, а с целью профилактики дальнейшего прогрессирования тугоухости получать курсы медикаментозного лечения.

text_fields

text_fields

arrow_upward

Функции слуховой системы характеризуют сле­дующими показателями:

  1. Диапазоном слышимых частот;
  2. Абсо­лютной чувствительностью по частоте;
  3. Дифферен­циальной чувствительностью по частоте и интенсивности;
  4. Про­странственной и временной разрешающей способностью слуха.

Диапазон частот

text_fields

text_fields

arrow_upward

Диапазон частот, воспринимаемых взрослым человеком, охваты­вает около 10 октав музыкальной шкалы - от 16-20 Гц до 16-20 кГц.

Этот диапазон, характерный для людей до 25 лет, постепенно уменьшается из года в год за счет сокращения его высокочастотной части. После 40 лет верхняя частоты слышимых звуков уменьшается на 80 Гц каждые последующие полгода.

Абсо­лютная чувствительность по частоте

text_fields

text_fields

arrow_upward

Наибольшая чувствительность слуха имеет место на частотах от 1 до 4 КГц. В этом диапазоне частот чувствительность слуха чело­века близка к уровню броуновского шума - 2 x 10 -5 Па.

Судя по аудиограмме, т.е. функции зависимости порога слухового ощущения от частоты звука, чувствительность к тонам ниже 500 Гц неуклонно снижается: на частоте 200 Гц - на 35 дБ, а на частоте 100 Гц - на 60 дБ.

Подобное ухудшение чувствительности слуха, на первый взгляд, кажется странным, поскольку оно затрагивает именно тот диапазон частот, в котором лежит большая часть звуков речи и музыкальных инструментов. Однако, было подсчитано, что в пред­елах области слухового восприятия человек ощущает около 300 000 различных по силе и высоте звуков.

Малая чувствительность слуха к звука низкочастотного диапазона предохраняет человека от посто­янно ощущения низкочастотных колебаний и шумов собственного тела (движения мышц, суставов, шум крови в сосудах).

Дифферен­циальная чувствительность по частоте и интенсивности

text_fields

text_fields

arrow_upward

Дифференциальная чувствительность слуха человека характеризует способность отличать минимальные изменения параметров звука (интенсивности, частоты, длительности и т.д.).

В области средних уровней интенсивностей (порядка 40- 50 дБ над порогом слышимос­ти) и частот 500-2000 Гц дифференциальный порог по интенсив­ности составляет всего 0.5-1.0 дБ, по частоте 1%. Различия сигна­лов по длительности, которые воспринимаются слуховой системой, составляют величины менее 10%, а изменение угла расположения источника высокочастотного тона оценивается с точностью до 1-3°.

Про­странственная и временная разрешающая способность слуха

text_fields

text_fields

arrow_upward

Пространственный слух не только позволяет установить место расположения источника звучащего объекта, степень его удаленности и направление его перемещения, но и увеличивает четкость воспри­ятия. Простое сравнение монофонического и стереофонического прослушивания стереофонической записи дает полную картину пре­имущества пространственного восприятия.

Временные характеристики пространственного слуха базируются на объединении данных, получаемых от двух ушей (бинауральный слух).

Бинауральный слух определяют два основных условия.

  1. Для низких частот основным фактором является различие во времени попадания звука в левое и правое ухо,
  2. для высоких частот - различия в интенсивности.

Сначала звук достигает уха, расположенного ближе к источнику. При низких частотах звуковые волны «огибают» голову в силу их большой длины. Звук в воздушной среде имеет скорость 330 м/с. Следовательно, 1 см он проходит за 30 мкс. Поскольку расстояние между ушами человека составляет 17-18 см, а голову можно рассматривать как шар с радиусом 9 см, то разница между попадание звука в разные уши составляет 9π x 30=840 мкс, где 9π (или 28 см (π=3.14)) - это тот дополнительный путь, который должен прой­ти звук вокруг головы, чтобы попасть в другое ухо.

Естественно, эта разница зависит от места расположения источника - если он на­ходится по средней линии впереди (или сзади), то звук достигает обоих ушей одновременно. Малейший сдвиг вправо или влево от средней линии (даже менее 3°), уже воспринимается человеком. А это значит, что значимая для анализа мозгом разница между приходом звука на правое и левое ухо составляет меньше 30 мкс .

Следовательно, физическая пространственная размерность воспри­нимается за счет уникальных способностей слуховой системы как анализатора времени.

Для того, чтобы можно было отметить такую небольшую разницу во времени, необходимы очень тонкие и точные механизмы срав­нения. Такое сравнение осуществляется центральной нервной сис­темой в местах, где импульсация от правого и левого ушей сходится на одной структуре (нервной клетке).

Подобных мест, так называ­емых основных уровней конвергенции , в классической слуховой сис­теме не менее трех - это верхнеоливарный комплекс, нижний холм и слуховая кора. Дополнительные места конвергенции находятся внутри каждого уровня, например, межхолмовые и межполушарные связи.

Фаза звуковой волны связана с различиями во времени поступ­ления звука в правое и левое ухо. Более «поздний» звук отстает по фазе от предыдущего, более «раннего» звука. Это отставание имеет значение при восприятии относительно низких частот звуков. Это частоты с длиной волны не менее 840 мкс, т.е. частоты не более 1300 Гц.

При высоких частотах , когда величина головы значительно больше длины звуковой волны, последняя не может «огибать» это препят­ствие. Например, если звук имеет частоту 100 Гц, то длина его волны составляет 33 м, при частоте звука 1000 Гц - 33 см, а при частоте 10000 Гц - 3,3 см. Из приведенных цифр следует, что при высоких частотах звук отражается головой. В результате возникает разница и в интенсивности звуков, поступающих на правое и левое ухо. У человека дифференциальный порог по интенсивности на частоте 1000 Гц составляет величину порядка 1 дБ, поэтому оценка местоположения источника звука высокой частоты основывается на различиях интенсивности звука, попадающего на правое и левое ухо.

Разрешающая способность слуха по времени характеризуется дву­мя показателями.

Во-первых , это временная суммация . Характерис­тики временной суммации -

  • время, в течение которого длитель­ность стимула влияет на порог ощущения звука,
  • степень этого влияния, т.е. величина изменения порога реакции. У человека вре­менная суммация длится около 150 мс.

Во-вторых , это минимальный интервал между двумя короткими раздражителями (звуковыми им­пульсами), которой различается ухом. Его величина составляет 2-5 мс.

При передаче колебаний по воздуху, и до 220 кГц при передаче звука по костям черепа. Эти волны имеют важное биологическое значение, например, зву­ковые волны в диапазоне 300-4000 Гц соответствуют человеческому голосу. Звуки выше 20 000 Гц имеют малое практическое значение, так как быстро тормозятся; колебания ниже 60 Гц воспринимаются благодаря вибрационному чувству. Диапазон частот, которые способен слышать человек, называется слуховым или звуковым диапазоном ; более высокие частоты называются ультразвуком , а более низкие - инфразвуком .

Физиология слуха

Способность различать звуковые частоты сильно зависит от конкретного человека: его возраста , пола , подверженности слуховым болезням, тренированности и усталости слуха. Отдельные личности способны воспринимать звук до 22 кГц , а возможно - и выше.

Некоторые животные могут слышать звуки, не слышимые человеком (ультра- или инфразвук). Летучие мыши во время полёта используют ультразвук для эхолокации . Собаки способны слышать ультразвук, на чём и основана работа беззвучных свистков. Существуют свидетельства того, что киты и слоны могут использовать инфразвук для общения.

Человек может различать несколько звуков одновременно благодаря тому, что в ушной улитке одновременно может быть несколько стоячих волн .

Удовлетворительно объяснить феномен слуха оказалось необычайно сложной задачей. Человек, представивший теорию, объяснявшую бы восприятие высоты и громкости звука, почти наверняка гарантировал бы себе Нобелевскую премию.

Оригинальный текст (англ.)

Explaining hearing adequately has proven a singularly difficult task. One would almost ensure oneself a Nobel prize by presenting a theory explaining satisfactorily no more than the perception of pitch and loudness.

- Ребер, Артур С., Ребер (Робертс), Эмили С. The Penguin Dictionary of Psychology. - 3rd Edition. - Лондон : Penguin Books Ltd, . - 880 с. - ISBN 0-14-051451-1 , ISBN 978-0-14-051451-3

В начале 2011 г. в отдельных СМИ, связанных с научной тематикой, прошло краткое сообщение о совместной работе двух израильских институтов. В человеческом мозге выделены специализированные нейроны, позволяющие оценить высоту звука, вплоть до 0,1 тона. Животные, кроме летучих мышей, таким приспособлением не обладают, и для разных видов точность ограничена от 1/2 до 1/3 октавы. (Внимание! Данная информация требует уточнения!)

Психофизиология слуха

Проецирование наружу слуховых ощущений

Как бы ни возникали слуховые ощущения, мы относим их обыкновенно во внешний мир, и поэтому причину возбуждения нашего слуха мы всегда ищем в колебаниях, получаемых извне с того или другого расстояния. Эта черта в сфере слуха выражена гораздо слабее, нежели в сфере зрительных ощущений, отличающихся своей объективностью и строгой пространственной локализацией и, вероятно, приобретается также путём долгого опыта и контроля других чувств. При слуховых ощущениях способность к проецированию, объективированию и пространственной локализации не может достигнуть столь высоких степеней, как при зрительных ощущениях. Виной этому такие особенности строения слухового аппарата, как, например, недостаток мышечных механизмов, лишающий его возможности точных пространственных определений. Известно то огромное значение, какое имеет мышечное чувство во всех пространственных определениях.

Суждения о расстоянии и направлении звуков

Наши суждения о расстоянии, на котором издаются звуки, являются весьма неточными, в особенности если глаза человека закрыты и он не видит источника звуков и окружающие предметы, по которым можно судить об «акустике окружения» на основании жизненного опыта, либо акустика окружения нетипична: так, например, в акустической безэховой камере голос человека, находящегося всего в метре от слушающего, кажется последнему в разы и даже десятки раз более удалённым. Также знакомые звуки представляются нам тем более близкими, чем они громче, и наоборот. Опыт показывает, что мы менее ошибаемся в определении расстояния шумов, нежели музыкальных тонов. Способность суждения о направлении звуков у человека весьма ограничена: не имея подвижных и удобных для собирания звуков ушных раковин , он в случаях сомнений прибегает к движениям головы и ставит её в положение, при котором звуки различаются наилучшим образом, то есть звук локализируется человеком в том направлении, с которого он слышится сильнее и «яснее».

Известно три механизма, при помощи которых можно различить направление звука:

  • Разница в средней амплитуде (исторически первый обнаруженный принцип): для частот выше 1 кГц, то есть таких, что длина звуковой волны меньше, чем размер головы слушающего, звук, достигающий ближнего уха, имеет бо́льшую интенсивность.
  • Разница в фазе: ветвистые нейроны способны различать фазовый сдвиг до 10-15 градусов между приходом звуковых волн в правое и левое ухо для частот в примерном диапазоне от 1 до 4 кГц (что соответствует точности в определении времени прихода в 10 мкс).
  • Разница в спектре: складки ушной раковины , голова и даже плечи вносят в воспринимаемый звук небольшие частотные искажения, по-разному поглощая различные гармоники, что интерпретируется мозгом как дополнительная информация о горизонтальной и вертикальной локализации звука.

Возможность мозга воспринимать описанные различия в звуке, слышимым правым и левым ухом, привело к созданию технологии бинауральной записи .

Описанные механизмы не работают в воде: определение направления по разности громкостей и спектра невозможно, так как звук из воды проходит практически без потерь напрямую в голову, и значит в оба уха, из-за чего громкость и спектр звука в обоих ушах при любом расположении источника звука с высокой точностью одинаковы; определение направления источника звука по фазовому сдвигу невозможно, так как из-за гораздо более высокой в воде скорости звука длина волны возрастает в несколько раз, а значит фазовый сдвиг многократно уменьшается.

Из описания приведённых механизмов понятна и причина невозможности определения расположения источников низкочастотного звука.

Исследование слуха

Слух проверяют с помощью специального устройства или компьютерной программы под названием «аудиометр ».

Определяют и частотные характеристики слуха, что важно при постановке речи у слабослышащих детей.

Норма

Восприятие частотного диапазона 16 Гц − 22 кГц с возрастом изменяется - высокие частоты перестают восприниматься. Уменьшение диапазона слышимых частот связано с изменениями во внутреннем ухе (улитке) и с развитием с возрастом нейросенсорной тугоухости.

Порог слышимости

Порог слышимости - минимальное звуковое давление, при котором звук данной частоты воспринимается ухом человека. Величину порога слышимости выражают в децибелах . За нулевой уровень принято звуковое давление 2·10 −5 Па на частоте 1 кГц. Порог слышимости у конкретного человека зависит от индивидуальных свойств, возраста, физиологического состояния.

Порог болевого ощущения

Порог болевого ощущения слуховой - величина звукового давления, при котором в слуховом органе возникают боли (что связано, в частности, с достижением предела растяжимости барабанной перепонки). Превышение данного порога приводит к акустической травме. Болевое ощущение определяет границу динамического диапазона слышимости человека, который в среднем составляет 140 дБ для тонального сигнала и 120 дБ для шумов со сплошным спектром.

Патология

См. также

  • Слуховая галлюцинация
  • Слуховой нерв

Литература

Физический энциклопедический словарь/Гл. ред. А. М. Прохоров. Ред. коллегия Д. М. Алексеев, А. М. Бонч-Бруевич, А. С. Боровик-Романов и др. - М.: Сов. энцикл., 1983. - 928 с., стр. 579

Ссылки

  • Видеолекция Слуховое восприятие

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Слух" в других словарях:

    слух - слух, а … Русский орфографический словарь

    слух - слух/ … Морфемно-орфографический словарь

    Сущ., м., употр. часто Морфология: (нет) чего? слуха и слуху, чему? слуху, (вижу) что? слух, чем? слухом, о чём? о слухе; мн. что? слухи, (нет) чего? слухов, чему? слухам, (вижу) что? слухи, чем? слухами, о чём? о слухах восприятие органами… … Толковый словарь Дмитриева

    Муж. одно из пяти чувств, коим распознаются звуки; орудие его ухо. Слух тупой, тонкий. У глухих и безухих животных слух заменяется чувством сотрясения. Идти на слух, искать по слуху. | Музыкальное ухо, внутренее чувство, постигающее взаимный… … Толковый словарь Даля

    Слуха, м. 1. только ед. Одно из пяти внешних чувств, дающее возможность воспринимать звуки, способность слышать. Ухо – орган слуха. Острый слух. «До слуха его долетел хриплый крик.» Тургенев. «Желаю славы я, чтоб именем моим твой слух был поражен … Толковый словарь Ушакова

Мы часто оцениваем качество звучания. При выборе микрофона, программы для обработки звука или формата записи звукового файла один из самых важных вопросов - насколько хорошо будет это звучать. Но существуют различия между характеристиками звука, которые можно измерить и теми, которые можно услышать.

Тон, тембр, октава.

Мозг воспринимает звуки определённых частот. Это связано с особенностями механизма внутреннего уха . Рецепторы, расположенные на основной мембране внутреннего уха превращают звуковые колебания в электрические потенциалы, возбуждающие волокна слухового нерва. Волокна слухового нерва обладают частотной избирательностью, обусловленной возбуждением клеток кортиева органа, находящихся в разных местах основной мембраны: высокие частоты воспринимаются вблизи овального окна, низкие – у вершины спирали.

С физической характеристикой звука, частотой, тесно связана ощущаемая нами высота тона. Частота измеряется как количество полных циклов синусоидальной волны за одну секунду (герц, Гц). Это определение частоты основано на том, что у синусоидальной волны форма колебаний волн в точности сохраняется. В реальной жизни очень немногие звуки обладают таким свойством. Однако любой звук можно представить набором синусоидальных колебаний. Такой набор мы обычно и называем тоном. То есть, тон – это сигнал определенной высоты, имеющий дискретный спектр (музыкальные звуки, гласные звуки речи), в котором выделяется частота синусоидальной волны, имеющая в этом наборе максимальную амплитуду. Сигнал, обладающий широким непрерывным спектром, все частотные составляющие которого имеют одинаковую среднюю интенсивность, называют белым шумом.

Постепенное увеличение частоты звуковых колебаний воспринимается как постепенное изменение тона от самого низкого (басового) до наиболее высокого.

Степень точности, с которой человек определяет высоту звука на слух, зависит от остроты и тренировки его слуха. Ухо человека хорошо различает два близких по высоте тона. Например, в области частот примерно 2000 Гц человек может различать два тона, которые отличаются друг от друга по частоте на 3-6 Гц или даже меньше.

Спектр частот музыкального инструмента или голоса содержит последовательность равномерно расположенных пиков - гармоник. Они соответствуют частотам, кратным некоторой базовой частоте, самой интенсивной из составляющих звук синусоидальных волн.

Особый звук (тембр) музыкального инструмента (голоса) связан с относительной амплитудой различных гармоник, а воспринимаемая человеком высота тона наиболее точно передает базовая частота. Тембр, являясь субъективным отображением воспринимаемого звука, не имеет количественной оценки и характеризуется только качественно.

В «чистом» тоне присутствует только одна частота. Обычно же воспринимаемый звук состоит из частоты основного тона и нескольких ""примесных" частот, называемых обертонами. Обертоны кратны частоте основного тона и меньше его по амплитуде. От распределения интенсивности по обертонам зависит тембр звука. Более сложным оказывается спектр сочетания музыкальных звуков, называемый аккордом. В таком спектре присутствуют несколько основных частот вместе с сопутствующими обертонами.

Если частота одного звука ровно вдвое превосходит частоту другого, звуковая волна «укладывается» одна в другую. Частотное расстояние между такими звуками называется октавой. Диапазон частот, воспринимаемых человеком, 16-20 000 Гц, охватывает приблизительно десять-одиннадцать октав.

Амплитуда звуковых колебаний и громкость.

Слышимую часть диапазона звуков разделяют на низкочастотные звуки – до 500 Гц, среднечастотные – 500-10000 Гц и высокочастотные – свыше 10000 герц. Наиболее чувствительно ухо к сравнительно узкому диапазону среднечастотных звуков от 1000 до 4000 Гц. То есть, звуки одинаковой силы в среднечастотном диапазоне могут восприниматься как громкие, а в низкочастотном или высокочастотном - как тихие или быть вовсе не слышны. Такая особенность восприятия звука связана с тем, что звуковая информация, необходимая для существования человека – речь или звуки природы – передаётся, в основном, в среднечастотном диапазоне. Таким образом, громкость – это не физический параметр, а интенсивность слухового ощущения, субъективная характеристика звука, связанная с особенностями нашего восприятия.

Слуховой анализатор воспринимает повышение амплитуды звуковой волны за счёт увеличения амплитуды вибрации основной мембраны внутреннего уха и стимуляции всё большего числа волосковых клеток с передачей электрических импульсов с большей частотой и по большему числу нервных волокон.

Наше ухо может различать интенсивность звука в диапазоне от самого слабого шепота до самого громкого шума, что примерно соответствует увеличению амплитуды движения основной мембраны в 1 млн. раз. Однако ухо интерпретирует это громадное различие в амплитуде звука приблизительно как 10000-кратное изменение. То есть, шкала интенсивности сильно «сжата» механизмом восприятия звука слухового анализатора. Это позволяет человеку интерпретировать различия в интенсивности звука в чрезвычайно широком диапазоне.

Интенсивность звука измеряется в децибелах (дБ) (1 бел равен десятикратному увеличению амплитуды). Эту же систему применяют для определения изменения громкости.

Для сравнения можно привести примерный уровень интенсивности разных звуков: едва слышимый звук (порог слышимости) 0 дБ; шёпот около уха 25-30 дБ; речь средней громкости 60-70 дБ; очень громкая речь (крик) 90 дБ; на концертах рок и поп музыки в центре зала 105-110 дБ; рядом с взлетающим авиалайнером 120 дБ.

Величина приращения громкости воспринимаемого звука имеет порог различения. Число градаций громкости, различаемое на средних частотах, не превышает 250, на низких и высоких частотах оно резко уменьшается и в среднем составляет около 150.