Как из желтка развивается цыпленок. Овоскопирование — заглянем внутрь куриного яйца Чем питается птенец в яйце

Добрый день, дорогие читатели! Мы сегодня дадим описание, покажем фото и видео про развитие цыпленка в яйце по дням во время инкубации в домашних условиях и на птицефабриках. уверенно практикуется как в фабричных масштабах, так и на частных подворьях.

Но, несмотря на широкое распространение, мало кто задумывается о сложном механизме, заложенном на генетическом уровне, обеспечивающим рост и развитие цыпленка.

До сих пор встречается мнение, что птенец вырастает из желтка. В этой статье вы узнаете все секреты, скрываемые под , а также что за «страшный» смысл скрывается под словами аллантоис у цыпленка и амнион у цыпленка, и какую функцию они выполняют.

Развитие цыпленка в яйце по дням фото

Бластодиск

Развитие цыпленка начинается с бластодиска. Бласодиск – это небольшой сгусток цитоплазмы, находящийся на поверхности желтка. В месте нахождения бластодиска плотность желтка значительно ниже, что способствует неизменному всплыванию желтка бластодиском вверх.

Эта особенность обеспечивает лучшее прогревание в процессе инкубации. Оплодотворенный бластодиск начинает деление еще в организме и к моменту снесения он уже полностью окружен бластодермой. Выглядит бластодиск как небольшое белое пятнышко размером около 2 мм.

Светлый ореол, кольцом окружающий зародышевый диск является бластодермой.

При попадании яйца в благоприятные окружающие условия, остановившееся после снесения, деление клеток продолжается.

Следует знать: Вопреки распространенному мнению, что овоскопирование можно проводить только с 6 дня инкубации, развитие бластодермы хорошо просматривается через 18-24 часа от начала инкубации. К этому моменту отчетливо видно затемнение диаметром 5–6 мм, легко перемещающееся при переворачивании яйца.

На 2 – 3 сутки инкубации начинается развитие провизорных оболочек:

  1. Амнион у цыпленка
  2. Аллантоис у цыпленка

Все они являются, по сути, временными органами, призванными выполнять функции обеспечения жизнедеятельности зародыша до момента его окончательного формирования.

Амнион у цыпленка

Представляет собой оболочку, предохраняющую зародыш от физического воздействия и высыхания, благодаря наполнению жидкостью. Амнион у цыпленка регулирует количество жидкости в зависимости от возраста зародыша.

Эпителиальная поверхность амниотического мешка способна наполнять водой полость с эмбрионом, а также обеспечивает отток жидкости по мере его роста.

Аллантоис у цыпленка

Один из временных органов, выполняющий множество функций:

  • снабжение эмбриона кислородом;
  • изолирует от эмбриона отходы жизнедеятельности;
  • участвует в транспорте жидкости и питательных веществ;
  • осуществляет доставку минеральных веществ и кальция от скорлупы к зародышу.

Аллантоис у цыпленка, в процессе роста, создает разветвленную сосудистую сеть, которая выстилает всю внутреннюю поверхность яйца и соединяется с птенцом через пуповину.

Дыхание цыпленка в яйце

Кислородообмен в яйце в зависимости от стадии развития цыпленка имеет различный механизм. На начальной стадии развития, кислород поступает из желтка напрямую в клетки бластодермы.

С появлением кровеносной системы, кислород поступает уже в кровь, по-прежнему из желтка. Но желток не может полностью обеспечить дыхание быстрорастущего организма.

Начиная, с 6 дня функция обеспечения кислородом, постепенно, перекладывается на аллантоис. Рост его начинается в сторону воздушной камеры яйца и достигнув ее, покрывает все большую внутреннюю площадь скорлупы. Чем больше растет цыпленок, тем большую площадь покрывает аллантоис.

При овоскопировании он выглядит как розоватая сеть, охватывающая все яйцо и замыкающаяся с острой его стороны.

Питание цыпленка в яйце

В первые дни развития эмбрион использует питательные вещества белка и желтка. Так как в желтке содержится целый комплекс минеральных веществ, жиров и углеводов, он способен обеспечить все первоначальные потребности растущего организма.

После замыкания аллантоиса (11 день развития), происходит перераспределение функций. Зародыш, становится крупнее и принимает положение вдоль длинной оси яйца, головой к тупому концу. Белок к этому моменту сконцентрирован в остром конце яйца.

Вес птенца вкупе с давлением аллантоиса обеспечивает смещение белка и проникновение его через амнион в рот зародыша. Благодаря этому непрерывному процессу обеспечивается быстрый рост и развитие цыпленка в яйце по дням во время инкубации.

С 13 дня минеральные вещества, которые использует цыпленок для дальнейшего развития, доставляются аллантоисом от скорлупы.

Следует знать: Нормальное питание цыпленка, способен обеспечить, только своевременно замкнутый аллантоис у цыпленка. Если, при его смыкании, в остром конце яйца, остался не покрытый сосудами белок, цыпленку не хватит питательных веществ для дальнейшего роста.

Положение яйца и развитие цыпленка

В последнее время все шире практикуется инкубация куриных яиц в вертикальном положении. Но такой способ не самым лучшим образом сказывается на развитии цыпленка.

При вертикальном положении, максимальный наклон при поворотах равен 45°. Этого наклона недостаточно для нормального роста аллантоиса и своевременного его смыкания. Особенно это касается крупных яиц.

При инкубации в горизонтальном положении поворот обеспечивается на 180°, что положительно влияет на рост аллантоиса и как следствие питание птенчика.

Как правило, выведенные при вертикальном положении яиц, имеют вес на 10% ниже, чем выведенные при горизонтальном положении.

Значение поворачивания яйца для развития цыпленка

Поворачивание яиц во время инкубации необходимо на всех стадиях развития, кроме первых суток и двух последних. В первые сутки необходимо интенсивное прогревание бластодиска, а в последние сутки маленький пискун уже принял положение для пробивания скорлупы.

На начальных стадиях развития поворачивание яиц устраняет риск прилипания бластодермы или амниона к внутренней стороне скорлупы.

Для любого птицевода, который занимается разведением и выращиваем молодняка, важно, чтобы инкубационное яйцо было высокого качества. Только так можно получить здорового и активного цыпленка. Для того чтобы не переживать весь период насиживания, советуют проводить овоскопирование куриных яиц. Процедура эта совсем несложная и что именно она собой представляет, мы и расскажем сегодня!

Что такое овоскопирование?

Овоскопирование – это метод определения качества инкубационного яйца путем просвечивания его пучком света. Дело в том, что еще наши предки заметили, что если поместить яйцо перед источником света, то можно увидеть его содержимое. Для этих целей они использовали обычную свечу, позднее появились несложные аппараты – овоскопы. Принцип их таков же, яйца кладутся на специальную решетку, подсвечиваются снизу ярким светом и можно без сложностей рассмотреть их содержимое. Плюс в том, что ни у какого другого животного невозможно так тщательно проконтролировать процесс инкубационного развития, как у птиц.

Тонкости процедуры

Провести овоскопирование несложно, равно, как и изготовить сам овоскоп. Он может представлять собой картонную коробку, на дне которой будет находить источник света. Желательно обычная лампа накаливания, мощностью не менее 100 Вт. Иногда под лампой устанавливают светоотражатель. Наверху коробки делается отверстие, размер которого должен быть немного меньше исследуемого объекта, он помещается в это отверстие и легкими поворотами в разные стороны тщательно исследуется.

Проводить овоскопирование ежедневно не нужно. Во-первых, это стресс для курицы, если вы используете традиционный способ высиживания, во-вторых, есть риск повредить яйцо. В-третьих, при извлечении яйца из инкубатора или из-под курицы температура его падает и это может пагубно сказаться. Поэтому процедуру овоскопироавния рекомендуют проводить в теплом помещении и не более 5 минут. Предлагаем вам посмотреть видео, на котором показано, как проводится процедура овоскопирования.

Для чего нужен метод?

Овоскопирование необходимо для контроля над инкубационным процессом, своевременной отбраковкой яиц с патологией или другими нарушениями в развитии плода. Перед закладкой яиц в инкубатор рекомендуется просматривать их на овоскопе и выбирать такие, которым присущи следующие признаки:

  1. Скорлупа имеет однородную структуру, просвечивается равномерно.
  2. В тупом конце просматривается небольшая воздушная камера.
  3. Желток с нечеткими краями располагается по центру, иногда ближе к тупому концу, он со всех сторон окружен белком.
  4. При вращении яиц желток вращается несколько медленней.
  5. Посторонних и инородных включений не наблюдается.

Овоскопирование при нормальном развитии зародыша

Как мы уже говорили, слишком часто проводить овоскопирование куриных яиц не нужно. Оптимально проводить его с интервалом не менее 3-5 дней. Специалисты утверждают, что лучшее время для первой овоскопии яичных пород кур – это шестой день инкубации или хотя бы 4-5 день. Для мясных пород лучше выждать еще полдня и уже на шестой с половиной день инкубации посмотреть, что происходит внутри.

Ранние сроки инкубации

Итак, на ранних сроках инкубации, начиная с 4 дня, можно отличить оплодотворенное яйцо от неоплодотворенного, если таковое попало в ваш инкубатор. Просматриваются нити кровеносных сосудов, сам зародыш пока не виден, но при покачивании можно увидеть его тень. Опытные специалисты могут рассмотреть биение сердца. Свечение приобретает розоватый оттенок.

На втором просмотре в овоскопе при нормальном развитии зародыша можно увидеть аллантоис (эмбриональный орган дыхания высших позвоночных животных, зародышевая оболочка). Он должен выстилать всю внутреннюю поверхность скорлупы и замыкаться в остром конце. Зародыш при этом уже достаточно крупный, окутанный нитями кровеносных сосудов. Еще одно видео, на котором птицевод занимается овоскопированием и комментирует весь процесс, представлено ниже.

Поздние сроки инкубации

Время для последнего овоскопирования – это самый конец инкубации. Помогает определить яйца с замершим плодом и оценить ход развития инкубационного процесса во второй фазе. При нормальном развитии на поздних сроках инкубации зародыш будет занимать практически все пространство, должны просвечиваться его очертания и даже время от времени определяться движения.

Овоскопия при патологии

Овоскопия при патологии – просто бесценный метод диагностики. Если, проводя овоскопирование, вы отбраковали достаточное количество яиц со схожими патологиями, возможно следует обратить внимание на условия в вашем инкубаторе. Не годятся для инкубации яйца, имеющие следующие особенности:

  1. На скорлупе присутствуют полосы.
  2. Скорлупа имеет неоднородную «мраморную» структуру.
  3. Воздушная камера не находится в тупом конце, а смещена.
  4. Желток явно не просматривается, цвет содержимого однородный красновато-оранжевый.
  5. Желток с легкостью перемещается или, наоборот, не движется вовсе.
  6. Внутри яиц видны сгустки крови или другие включения (это могут быть песчинки, яйца гельминтов или попавшие в яйцевод перья).
  7. Под скорлупой видны темные пятна (возможно, колонии плесени).

Замершее развитие плода

К сожалению, иногда случается так, что куриный плод замирает в своем развитии. Случается это, как правило, в середине инкубационного периода, на 8-17 сутки, диагностировать эту патологию можно на второй овоскопии. Зародыш при этом будет выглядеть как темное пятно, кровеносные сосуды просматриваться не будут. Встречаются еще и так называемые задохлики - зародыши, которые погибли на поздних стадиях развития. Как правило, это практически сформированные птенцы, которые не смогли по каким-либо причинам вылупиться.

Фотогалерея

Видео «Развитие куриного яйца по дням»

Чтобы понимать, что именно происходит с куриным плодом во время инкубации и как он развивается, предлагаем вам посмотреть интересное видео! А видео на тему овоскопии в интернете достаточно много, это помогает начинающим птицеводам разобраться в этом вопросе.

Овоскопирование куриных яиц перед и во время инкубации, или просвечивание через специальный прибор овоскоп, проводят для выявления у эмбрионов возможных отклонений в развитии и при необходимости возможности принять меры по улучшению условий инкубации.

Применение овоскопа – это одна из самых надежных методик определения различных патологий, которые не видны невооруженным глазом.

Во время осмотра специалист определяет, оплодотворенное ли яйцо или нет, есть ли в скорлупе трещины. Яйца даже с небольшими трещинками обязательно удаляют, чтобы предотвратить появление бактерий и заражения других яиц.

Прибор овоскоп может быть, как покупным и стоить достаточно дорого, так и самодельным. Частные фермеры часто изготавливают его своими силами и эффективно используют в хозяйстве.


Техника осмотра достаточно простая. Яйцо берут в правую руку и подносят к овоскопу, поворачивая вдоль продольной оси. Правильное овоскопирование куриных яиц позволит внимательно рассмотреть все недостатки.

На птицефабриках данная процедура проводится в специальном помещении. Яйца привозят на яйцевозах в инкубаторий, откуда контейнеры с содержимым отправляют в помещение для дальнейшей сортировки.

После овоскопирования яйца годные к инкубации, размещают в лотки и отправляют на дезинфекцию, откуда они пойдут непосредственно в инкубатор для выращивания.


Перед закладкой яиц в инкубатор вас должны насторожить следующие дефекты:

  • пятнистая мраморная структура скорлупы, которая свидетельствует о недостатке или переизбытке кальция,
  • светлые полосы, появляющиеся в результате повреждений,
  • большая воздушная камера, а также камера в остром конце и сбоку,
  • сгустки крови,
  • темные пятна (являются признаком колоний плесени),
  • посторонние предметы (перья, песчинки),
  • содержимое имеет оранжево-красный цвет без визуально заметного желтка (скорее всего, желток порвался и перемешался с белком),
  • два желтка,
  • желток свободно перемещается по яйцу и не возвращается на место,
  • желток зафиксировался в одном месте (возможно, что он присох).

ВИДЕО ИНСТРУКЦИЯ

На протяжении всего периода инкубации овоскопирование проводится несколько раз. Это позволяет отследить развитие зародыша и отбраковать яйца, непригодные для дальнейшей инкубации. Не рекомендуется вынимать яйца из инкубатора более, чем на 25 минут.

Этапы овоскопирования

3 день инкубации

Яйцо на третий день инкубации хорошо просвечивается, и можно увидеть:

  • желток,
  • воздушную камеру в тупом конце яйца.

Определить, оплодотворено оно или нет, пока невозможно.

4 день инкубации

При овоскопировании видны:

  • воздушная камера в тупом конце,
  • начало развития кровеносных сосудов,
  • легкое сердцебиение зародыша.

5 день инкубации

При просвечивании вы увидите:

  • воздушную камеру в тупом конце,
  • увеличились кровеносные сосуды более, чем на половину яйца, их хорошо видно – это значит, что идет активное развитие зародыша.

6 день инкубации

Хорошо заметны:

  • воздушная камера,
  • кровеносные сосуды заполнили почти все яйцо,
  • видны движения самого зародыша.

7 день инкубации

При просвечивании вы увидите:

  • движения зародыша,
  • хорошо развитые кровеносные сосуды (заполнили почти все яйцо),
  • воздушная камера.

11 день инкубации

При овоскопировании видны:

  • воздушная камера,
  • кровеносные сосуды четко заметны, полностью заполнили все яйцо,
  • яйцо уже не так просвечивается, как на седьмой день, имеет более темный оттенок.

15 день инкубации

Заметны следующие изменения:

  • яйцо уже не имеет такого просвета, как на одиннадцатый день,
  • просвечивающая часть имеет кровеносные сосуды,
  • хорошо видна воздушная камера.

19 день инкубации

При овоскопировании вы увидите, что:

  • яйцо практически не имеет просвета,
  • зародыш развит почти полностью, но еще не готов к выводку,
  • воздушная камера хорошо заметна.


О том, что развитие зародыша нарушено, и яйцо придется отбраковать, свидетельствуют:

  1. Отслоение подскорлупной оболочки. Воздушная камера смещается вбок, также можно увидеть кровеносные пятна вместо кровеносных сосудов по всему яйцу.
  2. Кровеносные кольца. Эмбрион погиб в период с первого по шестой день инкубации, в результате чего появляются кровеносные прожилки в виде колец.
  3. Замерший плод. Определить его можно с седьмого по четырнадцатый день инкубации. Зародыш выглядит как пятно, кровеносные сосуды не видны.
  4. «Задохлик» — так в народе называют яйца, из которых уже после завершения инкубации не вылупились птенцы. Причинами могут быть нарушения температурного режима, уровня влажности, переохлаждение.
  5. Оранжевый цвет. Желток разорвался и смешался с белком.
  6. Неоплод. После шестого дня инкубации не появились кровеносные сосуды, видны только желток и воздушная подушка.
  7. Нехватка кальция в скорлупе. Можно выявить в первые дни инкубации по мелким пятнам по всей скорлупе.
  8. Колонии плесени. На овоскопе представляют собой темные пятна. Не рекомендуются даже для приема в пищу, так как получены от больной птицы.

Сколько по времени длится период, за который курица высиживает яйца (цыплят)? Насиживание длится 21 сутки . За это время нужно трижды провести контроль эмбрионального развития при помощи овоскопа. В его ходе выявляют качество зародышей, условия насиживания. Куриные яйца просматривают на 7-й, 11-й и 18-й день с того момента, как курица начала высиживать яйца.

При первом просмотре развивающийся зародыш не должен быть виден, только его тень и хорошо развитые кровеносные сосуды на желтке. Плохо развитый зародыш хорошо просматривается у скорлупы, у погибшего зародыша сосуды темные, в виде кольца. Неоплодотворенные яйца просматриваются как полностью светлые.

Развитие эмбриона курицы в яйце

При втором осмотре хорошо развитые зародыши видны в виде сети кровеносных сосудов на светлом поле. Тень зародышей составляет четвертую часть.

При третьем просмотре зародыши видны в виде темного пятна. У тупого конца яйца можно наблюдать их движения.

После каждого осмотра выбракованные яйца следует отобрать, а оставшиеся сложить ближе к центру гнезда.


От яйцеклетки до яйца

Разобьем скорлупу куриного яйца. Под ней мы увидим плотную, как пергамент пленку. Это подскорлуповая оболочка, та самая, что не позволяет нам обойтись одной чайной ложкой при «уничтожении» сваренного всмятку яйца. Приходится расковыривать пленку вилкой или ножом, на худой конец руками. Под пленкой – студенистая масса белка, сквозь которую просвечивает желток.

Именно с него, с желтка, и начинается яйцо. Сначала он представляет собой ооцит (яйцеклетку), одетый в тонкую оболочку. Все вместе это называется фолликулом. Созревшее яйцо, накопившие в себе желток, прорывает оболочку фолликула и выпадает в широкую воронку яйцевода. В яичники птицы одновременно зреет несколько фолликулов, но созревают они в разное время, так что по яйцеводу движется всегда только одно яйцо. Здесь, в яйцеводе, происходит оплодотворение. А после этого яйцу предстоит одеться во все яйцевые оболочки – от белковой, до скорлупы.

Вещество белка (о том, что представляет из себя белок и желток мы поговорим чуть позже)выделяется особыми клетками и железами и слой за слоем наматывается на желток в длинном основном отделе яйцевода. На это уходит около 5 часов, После чего яйцо поступает в перешеек – наиболее узкий отдел яйцевода, где покрывается двумя подскорлуповыми оболочками. В самой крайней части перешейка на стыке со скорлуповой железой, яйцо делает остановку на 5 часов. Здесь оно набухает – впитывает воду и увеличивается до своих нормальных размеров. Подскорлуповые оболочки при этом все более растягиваются и в конце концов плотно прилегают к поверхности яйца. Дальше оно поступает в последний отдел яйцевода, скорлуповую оболочку, где делает вторую остановку на 15-16 часов - именно такое время опущено на формирование скорлупы. Когда оно сформируется, яйцо станет готовым начать самостоятельную жизнь.

Зародыш развивается

Для развития любого зародыша необходимо наличие «строительного материала» и «топлива», обеспечивающего поступление энергии. «Топливо» надо сжигать – значит, необходим еще и кислород. Но и это еще не все. В процессе развития зародыша образуются «строительные шлаки» и «отходы» от сжигания «топлива» - токсичные азотистые вещества и углекислый газ. Их необходимо выводить не только из самих тканей растущего организма, но и из его непосредственного окружения. Как видим, проблем не так уж и мало. Как же они все решаются?

У истинно живородящих животных – млекопитающих, все просто и надежно. Строительный материал и энергию, включая кислород, зародыш получает через кровь из организма матери. И тем же путем отправляет обратно «шлаки» и углекислый газ. Другое дело, кто откладывает яйца. Им строительный материал и топливо приходится выдавать зародышу «на вынос». Для этой цели служат высоко молекулярные органические соединения – белки, углеводы и жиры. Из низ растущий организм черпает аминокислоты и сахара, из которых строит белки и углеводы собственных тканей. Углеводы и жиры одновременно являются и основным источником энергии. Все эти вещества составляют компонент яйца, который мы называем желтком. Желток – запас пищи для развивающегося зародыша Теперь вторая проблема – куда деть токсичные отходы? Хорошо рыбами амфибиям. Их яйцо (икринка) развивается в воде и отгорожено от нее только слоем слизи и тонкой яйцевой мембраной. Так что кислород можно получать прямо из воды и в воду, же отправлять «шлаки». Правда, это выполнимо лишь при условии, что выводимые азотистые вещества хорошо растворимы в воде. Действительно, рыбы и амфибии выделяют продукты азотистого обмена в виде хорошо растворимого аммиака.

А как же быть птицам (и крокодилам, и черепахам), у которых яйцо покрыто плотной оболочкой и развивается не на воде, а на суше? Им приходится складировать токсичное вещество прямо в яйце, в особом «мусорном» мешочке, называемом аллантоисом. Аллантоис связан с кровеносной системой зародыша и вместе с приносимыми в него кровью «шлаками» остается уже в покинутом птенцом яйце. Конечно, в данном случае необходимо, чтобы продукты распада выделялись в твердой, плохо растворимой форме, иначе они вновь распространятся по всему яйцу. И действительно птицы и рептилии являются единственными позвоночными, которые выделяют не аммиак, а «сухую» мочевую кислоту.

Аллантоис в яйце развивается из собственных тканевых зачатков зародыша и относится к эмбриональным оболочкам, в противоположность оболочкам яйцевым – белковой, подскорлуповой и самой скорлупе, которые формируются еще в материнском организме. В яйцах рептилий и птиц кроме аллантоиса есть и другие эмбриональные оболочки, в частности амнион. Эта оболочка тонкой пленкой обрастает развивающийся зародыш, как бы включает его в себя, и заполняет амниотической жидкостью. Таким способом зародыш образует внутри себя свою собственную «водную» прослойку, которая защищает его от возможных сотрясений и механических повреждений. Не перестаешь удивляться, как премудро все устроено в природе. И сложно. Удивившись этой сложности и премудрости, эмбриологи возвели яйца птиц и рептилий в ранг амниотических, противопоставив им более просто устроенным икринкам рыб и амфибий. Соответственно, всех позвоночных животных делят на анамний (нет амниона – рыбы и земноводные) и амниот (имеют амнион – пресмыкающиеся, птицы и млекопитающие).

С «твердыми» отходами мы разобрались, но остается еще проблема газообмен. Как проникает в яйцо кислород? Как выводится углекислый газ? И здесь все продумано до мелочей. Скорлупа сама по себе, конечно, не пропускает газы, но она пронизана многочисленными узкими трубочками – поровыми, или дыхательными каналами, попросту порами. Пор в яйце тысячи, через них и осуществляется газообмен. Но и это еще не все. У зародыша развивается особый «внешний» дыхательный орган – хориалантоис, некое подобие плаценты у млекопитающих. Этот орган представляет собой сложную сеть кровеносных сосудов, выстилающих яйцо изнутри и быстро доставляющих кислород к тканям растущего эмбриона.

Еще одна проблема развивающегося зародыша – откуда брать воду. Яйца змей и ящериц могут впитывать ее из почвы, увеличиваясь при этом в объеме в 2-2,5 раза. Но яйца пресмыкающихся покрыты волокнистой оболочкой, у птиц же они закованы в панцирь скорлупы. Да и где в птичьем гнезде взять воду? Остается одно – запасти ее, как и питательные вещества, заранее, пока яйцо еще находится в яйцеводе. Для этого служит тот компонент, который в обиходе именуется белком. Он содержит 85-90%воды, абсорбированной веществом белковых оболочек – помните? – первой остановкой яйца в перешейке, на стыке со скорлуповой железой.

Что же, теперь-то кажется, все проблемы решены? Только кажется. Развитие зародыша – сплошные проблемы, решение одной тут же порождает другую. Например, поры в скорлупе позволяют зародышу получать кислород. Но через поры же будет испаряться (и испаряется) драгоценная влага. Что делать? Изначально запасать ее в белке с избытком, а из неизбежного процесса испарения постараться извлечь какую-нибудь пользу. Например, благодаря потерям воды свободное пространство в широком полюсе яйца, которое называют воздушной камерой, к концу инкубации значительно расширяется. К этому времени птенцу уже недостаточно для дыхания одного хориалантоиса, необходимо переходить на активное дыхание легкими. В воздушной камере накапливается воздух, которым птенец впервые наполнит легкие после того, как прорвет клювом подскорлуповую оболочку. Кислород здесь еще смешан со значительным количеством углекислого газа, так что собирающийся начать самостоятельную жизнь организм как бы постепенно привыкает к дыханию атмосферным воздухом.

И все же проблемы газообмена на этом не заканчиваются.

Поры в скорлупе

Итак, яйцо птицы «дышит» благодаря порам в скорлупе. Кислород поступает в яйцо, а пары воды и углекислый газ выводятся наружу. Чем больше пор и шире поровые каналы, тем быстрее проходит газообмен, и напротив, чем длиннее каналы, т.е. чем толще скорлупа, тем газообмен идет медленнее. Однако интенсивность дыхания эмбриона не может быть ниже определенной пороговой величины. И скорость, с которой воздух поступает в яйцо (ее называют газовой проводимостью скорлупы), должна этой величине соответствовать.

Казалось бы, чего проще, - пусть пор будет как можно больше, и они будут как можно шире – и кислорода будет всегда хватать, и углекислый газ будет отлично выводиться. Но не будем забывать про воду. За все время инкубации яйцо может потерять воды не более чем 15-20% от своего первоначального веса, иначе эмбрион погибнет. Говоря другими словами, существует и верхний предел для увеличения газовой проводимости скорлупы. Кроме того, яйца разных птиц, как известно отличаются по размерам – от менее чем1г. у колибри до 1,5кг. У африканского страуса. А у вымерших в XV в. родственных страусам мадагаскарских эпиорнисов объем яйца достигал аж 8-10л. Естественно, чем больше яйцо, тем быстрее должен поступать в него кислород. И вновь проблема – объем яйца (и, соответственно, масса эмбриона и его потребности в кислороде), как у любого геометрического тела, пропорционален кубу, а площадь поверхности – квадрату его линейных размеров. Например, увеличение длины яйца в 2 раза будет означать увеличение потребности в кислороде в 8 раз, а площадь скорлупы, через которую осуществляется газообмен, увеличится только в 4 раза. Следовательно, придется увеличивать еще и величину газовой проницаемости.

Исследования подтвердили, что газовая проницаемость скорлупы при увеличении размеров яйца действительно возрастает. При этом длина поровых каналов, т.е. толщина скорлупы, не уменьшается, а тоже увеличивается, хотя и медленнее.

Приходится «отдуваться» за счет числа пор. В 600-граммовом яйце страуса нанду пор в 18 раз больше, чем в курином яйце весящем 60г.

Птенец вылупляется

Существуют у птичьих яиц и другие проблемы. Если поры в скорлупе ничем не прикрыты, то поровые каналы работают как капилляры и вода легко проникает по ним в яйцо. Это может быть дождевая вода, принесенная на оперении насиживающей птицы. А с водой в яйцо попадают микробы – начинается гниение. Лишь некоторые птицы, из тех, что гнездятся в дуплах и других укрытиях, например попугаи и голуби, могут позволить себе имеет яйца с ничем не прикрытыми порами. У большинства птиц скорлупа яйца покрыта тонкой органической пленкой – кутикулой. Капиллярную воду кутикула не пропускает, а молекулы кислорода и пары воды проходят сквозь нее беспрепятственно. В частности, покрыта кутикулой и скорлупа яиц курицы.

Но у кутикулы есть свой враг. Это плесневые грибки. Грибок пожирает «органику» кутикулы, и тонкие нити его мицелия успешно проникают по поровым каналам в яйцо. С этим в первую очередь приходится считаться тем птицам, которые не поддерживают чистоту в гнездах (цапли, бакланы, пеликаны), а также тем, кто делает гнездо в богатой микроорганизмами среде, например на воде, в жидкой илистой грязи или в преющих кучах растительности. Так устроены плавающие гнезда чомги и других поганок, грязевые конусы фламинго и гнезда-инкудаторы сорных кур. У таких птиц скорлупа имеет своеобразную «противовоспалительную» защиту в виде особых поверхностных наслоений неорганического вещества, богатого корбанитом и фосфоритом кальция. Такое покрытие хорошо защищает дыхательные каналы не только от воды и плесени, но и грязи которая может препятствовать нормальному дыханию зародыша. Воздух же оно пропускает, так как испещрено микро трещинками.

Но, допустим, все обошлось. Ни бактерии, ни плесень не проникали в яйцо. Птенец нормально развился и готов появиться на свет. И снова проблема. Разлом скорлупы – очень ответственный период, настоящая напряженная работа. Даже прорезать тонкую, но упругую волокнистую оболочку бесскорлупового яйца пресмыкающегося – непростая задача. Для этого у эмбрионов ящериц и змей имеются специальные «яйцевые» зубы, сидящие как положено зубам, на челюстных костях. Этими зубами детеныши змеи прорезают оболочку яйца как лезвием, так что на ней остается характерный по форме разрез. Готовый вылупиться птенец, конечно, не имеет настоящих зубов, но обладает так называемым яйцевым бугорком (роговым выростом на надклювье), которым он скорее разрывает, чем разрезает подскорлуповую оболочку, а затем уже и проламывает скорлупу. Исключение – австралийские сорные куры. Их птенцы разламывают скорлупу не клювом, а когтями лап.

Но и те, кто пользуется яйцевым бугорком, как стало известно относительно недавно, делают это по-разному. Птенцы одних групп птиц прокладывают многочисленные крошечные отверстия по периметру у намеченного участка широкого полюса яйца и потом, поднажав, выдавливают его. Другие пробивают в скорлупе всего одно-два отверстия – и она трескается, как фарфоровая чашка. Тот или Инной путь определяется механическими свойствами скорлупы, особенностями ее строения. От «фарфоровой» скорлупы освободиться труднее, чем от вязкой, но и у нее есть ряд преимуществ. В частности, такая скорлупа может выдержать большие статические нагрузки. В этом есть необходимо, когда яиц в гнезде много и лежат они «кучей», одно на другом, а вес насиживающей птицы не мал как у многих куриных, уток и особенно страусов.

А как же появились на свет молодые эпиорнисы, если они были замурованы внутри «капсулы» с полуторасантиметровой броней? Такую скорлупу и руками-то разломить нелегко. Но есть одна тонкость. В яйце эпиотнисапоровые каналы внутри скорлупы ветвились, причем в одной плоскости, параллельно продольной оси яйца. На поверхности яйца образовалась цепочка узких желобков, куда и открывались поровые каналы. Такая скорлупа трескалась по рядам насечек при ударе изнутри яйцевым бугорком. Не так ли поступаем и мы, когда наносим алмазным резаком насечки на поверхности стекла, облегчая его раскол вдоль намеченной линии?

Итак, птенец вылупился. Вопреки всем проблемам и, казалось бы, неразрешимым противоречиям. Из небытия перешел в бытие. Началась новая жизнь. Поистине все простое просто по появлению, а по воплощению куда как сложно. В природе, во всяком случае. Задумаемся об этом, когда в очередной раз вынем из холодильника такое простое – проще некуда – куриное яйцо.