Из каких клеток невозможно клонирование. Медицина и клонирование

Человеческий эмбрион (6 дней после оплодотврения)

Плюрипотентные зародышевые клетки, полученные из крови пуповины человека

Стволовые клетки костного мозга человека (электронная микрофотография)

Эритроциты – первые специализированные клетки, полученные из стволовых клеток человека

Колонии недифференцированных эмбриональных стволовых клеток человека при увеличении х 20

В октябре 2001 г. компании Advanced Cell Technology (АСТ, США) удалось впервые получить клонированный эмбрион человека, состоявший из 6 клеток. Это означает, что клонирование эмбрионов в медицинских целях (так называемое терапевтическое клонирование) уже не за горами.

Целью такого клонирования является получение бластоцистов человека (полых сферических образований, состоящих примерно из 100 клеток), которые содержат внутреннюю клеточную массу. После извлечения из бластоцистов внутренние клетки могут развиваться в культуре, превращаясь в стволовые клетки, которые, в свою очередь, могут превращаться в любые дифференцированные клетки человека: нервные, мышечные, кроветворные, клетки желез и т.д.

Медицинские применения стволовых клеток очень перспективны и необычайно разнообразны. Они могут использоваться, например, для лечения сахарного диабета путем восстановления популяции погибших или поврежденных клеток поджелудочной железы, производящих инсулин. Их можно использовать и для замены нервных клеток при повреждениях головного или спинного мозга. При этом не возникает опасности отторжения трансплантатов и прочих нежелательных осложнений, сопровождающих обычные операции по пересадке клеток, тканей и органов.

В последнее время термин «терапевтическое клонирование» стали использовать и для обозначения клонирования эмбрионов, предназначенных для имплантации в матку женщины, которая затем может родить клонированного ребенка. Это оправдывают тем, что такое клонирование позволит иметь детей бесплодным парам. Однако оно не имеет отношения к лечению как таковому. Поэтому большинство ученых, занимающихся клонированием в медицинских целях, считают, что время «репродуктивного» клонирования еще не наступило – предстоит решить еще множество сложнейших биологических, медицинских и этических проблем.

Под клонированием понимают получение эмбриона либо при замене ядра яйцеклетки на ядро соматической клетки, либо путем партеногенеза, т.е. при делении неоплодотворенной яйцеклетки. В обоих случаях для клонирования необходимы жизнеспособные яйцеклетки, которые могут быть получены только от доноров.

На объявление компании АСТ с просьбой предоставить материал для научных исследований в области клонирования откликнулось множество женщин, из которых после тщательной проверки здоровья и психического состояния были отобраны 12 доноров. Интересно, что большинство потенциальных доноров заявили, что отказались бы участвовать в экспериментах по репродуктивному клонированию.

Донорам делали специальные инъекции гормонов, чтобы при овуляции выделялась не одна, а примерно 10 яйцеклеток. В качестве источников ядер для пересадки в яйцеклетки использовали фибробласты. Фибробласты получали из биопсий кожи анонимных доноров, среди которых были больные сахарным диабетом, а также пациенты с повреждениями спинного мозга. После выделения фибробластов из них получали культуры клеток.

В первых экспериментах были использованы ядра фибробластов. Однако после пересадки ядра яйцеклетка хоть и начинала делиться, но процесс быстро завершался, и не образовывалось даже двух раздельных клеток. После ряда неудач американские исследователи решили использовать подход Т.Вакаямы и Р.Янагимачи (так называемый гавайский метод), с помощью которого была получена первая клонированная мышь.

Этот метод состоит в том, что вместо ядра соматической клетки (фибробласта) в яйцеклетку пересаживается целая овариальная клетка. Овариальные клетки обеспечивают питанием развивающуюся яйцеклетку и настолько прочно с ней связаны, что сохраняются на ее поверхности даже после овуляции. Эти клетки настолько малы, что вместо ядра можно использовать целую клетку.

Однако и в этом случае возникли значительные трудности. Потребовалось более 70 экспериментов, прежде чем удалось получить делящуюся яйцеклетку. Из 8 яйцеклеток, в которые были введены овариальные клетки, две образовали четырехклеточный эмбрион, а одна – шестиклеточный. После этого их деление прекратилось.

Партеногенетический подход основан на том, что яйцеклетка становится гаплоидной не сразу, а на довольно позднем этапе созревания. Если бы такую почти созревшую яйцеклетку удалось активировать, т.е. стимулировать к делению, можно было бы получить бластоцист и стволовые клетки. Недостаток этого подхода заключается в том, что полученные стволовые клетки будут генетически родственны только донору яйцеклетки. Получить стволовые клетки для других людей таким способом невозможно – обязательно потребуется пересадка ядер в яйцеклетку.

Ранее были удачные попытки активации яйцеклеток мышей и кроликов с помощью различных веществ или электрического тока. Еще в 1983 г. Э.Робертсон получила стволовые клетки из партеногенетического эмбриона мыши и показала, что они могут формировать различные ткани, включая мышечную и нервную.

С человеческим эмбрионом все оказалось сложнее. Из 22 яйцеклеток, активированных химическим путем, только 6 образовали через пять дней нечто похожее на бластоцист. Однако внутренней клеточной массы в этих бластоцистах не было…

Существуют три типа клонирования млекопитающих: эмбриональное клонирование, клонирование зрелой ДНК (репродуктивное клонирование, метод Рослина) и терапевтическое (биомедицинское) клонирование.

При эмбриональном клонировании клетки, образующиеся в результате деления оплодотворенной яйцеклетки, разделяются и продолжают развиваться в самостоятельные эмбрионы. Так можно получать монозиготных близнецов, тройни и т.д. вплоть до 8 эмбрионов, развивающихся в нормальне организмы. Этот метод давно используется для клонирования животных различных видов, но по отношению к человеку его применимость исследована недостаточно.

Клонирование ДНК состоит в переносе ядра соматической клетки в неоплодотворенную яйцеклетку, из которой предварительно удалено ее собственное ядро. Такая клеточная операция впервые была осуществлена генетиком Г.Шпеманном в 1920-х гг.

После удаления ядра яйцеклетку различными способами заставляют перейти в стадию G0 клеточного цикла. В таком состоянии клетка находится в покое, что очень важно при подготовке ее к пересадке нового ядра. Пересадка ядра осуществляется либо путем трансплантации, как описано выше, либо путем слияния яйцеклетки с другой клеткой, содержащей ядро.

В каждой лаборатории используют свои модификации этих общих подходов. Наиболее известен метод Рослина, с помощью которого была получена овечка Долли.

Для успеха операции пересадки ядра важно синхронизировать клеточные циклы клеток-доноров и яйцеклетки. Такой метод был разработан и использован И.Уилмутом и К.Кэмпбеллом. Сначала клетки-доноры (при клонировании овец – из вымени) помещали в культуральную среду, где они начинали делиться. Затем выбирали одну из них и помещали в обедненную среду, в результате чего голодающая клетка переходила в стадию G0 клеточного цикла. После удаления ядра из яйцеклетки ее сразу же помещали рядом с клеткой-донором, а через 1–8 ч с помощью электрического импульса вызывали слияние клеток и активацию развития эмбриона.

Однако только немногие клетки выживают после такой процедуры. Выжившую клетку помещали в яйцевод овцы и позволяли развиваться примерно 6 дней, после чего переносили в матку, где и продолжалось развитие эмбриона. Если все складывалось удачно, в конце концов рождалась клонированная овца – точная генетическая копия овцы, от которой была взята клетка-донор.

Из-за высокого риска развития генетических дефектов и рака против использования этого метода для клонирования человека выступают многие ученые и общественные деятели. В большинстве стран репродуктивное клонирование человека запрещено.

Новым и наиболее эффективным является упомянутый выше гавайский метод репродуктивного клонирования. В июне 1998 г. группе ученых Гавайского университета впервые удалось клонировать мышь, причем были получены три поколения генетически идентичных клонов. Несмотря на то, что генетика и строение клеток мыши изучены лучше, чем у других животных, клонирование мыши представляло собой сложную задачу. Это связано с тем, что яйцеклетка мыши после оплодотворения практически сразу начинает делиться. Не случайно поэтому, что Рослин использовал для клонирования овцу: ее яйцеклетка начинает делиться только через несколько часов после оплодотворения.

Вакаяма и Янагимучи смогли преодолеть эту трудность и получили клоны мыши даже с большим выходом (3 из 100 попыток), чем Уилмут (1 из 277 попыток). Вакаяма подошел к проблеме синхронизации клеток иначе, чем Уилмут. Клетки вымени, использованные Уилмутом, надо было искусственно заставлять переходить в фазу G0. Вакаяма же с самого начала использовал три типа клеток – клетки Сертоли, клетки головного мозга и овариальные клетки, – которые сами по себе либо всегда находятся в фазе G0 (первые два типа клеток), либо почти всегда в фазе G0 или G1. Кроме того, донорские клетки использовали через несколько минут после выделения из тела мыши, а не содержали в культуре.

После удаления ядра из яйцеклетки в нее вводили ядро клетки-донора. Примерно через 1 ч клетка начинала нормально функционировать с новым ядром. Еще через 5 ч клетку помещали в специальную среду, которая стимулировала клеточное деление наподобие того, как это происходит при естественном оплодотворении. При этом среда содержала специальное вещество – цитохалазин В, – которое предотвращало развитие полярных телец. В результате из яйцеклетки развивался эмбрион, который затем можно было пересадить в матку будущей матери.

Чтобы убедиться в жизнеспособности клонов, Вакаяма получил клоны клонов, а также нормальное потомство от родителей-клонов, а всего к моменту публикации им было получено более 50 клонов.

Биомедицинское клонирование описано выше. Оно отличается от репродуктивного клонирования только тем, что яйцеклетка с пересаженным ядром развивается в искусственной среде, затем из бластоциста удаляют стволовые клетки, а сам пре-эмбрион при этом погибает. Стволовые клетки могут быть использованы для регенерации поврежденных или отсутствующих органов и тканей в очень многих случаях, однако процедура их получения порождает множество морально-этических проблем, и во многих странах законодатели обсуждают возможности запрещения биомедицинского клонирования. Тем не менее исследования в этой области продолжаются, и тысячи неизлечимо больных (болезнями Паркинсона и Альцгеймера, диабетом, рассеянным склерозом, ревматоидным артритом, раком, а также с травмами спинного мозга) с надеждой ждут их положительных результатов.

На сегодняшний день, когда уже очевидно, что вот так взять и быстро наштамповать армию клонов — одинаковых недочеловеков — не получится, ситуация с клонированием человека, так сказать, утряслась. Особых сенсаций ждать не приходится, но всё же...

Признаться, ошиблись мы в декабре 2001 года, предположив, что первый клон человека появится через 9 месяцев. И хотя это рискованное предположение мы впоследствии убрали, это не помешало читателю спросить в форуме : «9 месяцев прошли. Уважаемая редакция, где обещанный человек?» Действительно, и где?

Вкратце, положение дел таково, что теперь информация о клонировании условно делится на три потока. Первый — учёные отстаивают перед властями возможность клонирования стволовых клеток во имя будущего медицины. Тут есть интересные моменты.

Второй — опальная тройка учёных, засекретивших всё по самое не хочу, делает из недр своих тайных лабораторий заявления, вроде «первый клон человека вот-вот родится». Верить им особо никто не верит, но выслушивают с тревожным интересом.

Третье направление — довольно разношерстное и, пожалуй, местами скучноватое: специалисты предупреждают, спорят или выносят вердикт, что, мол, безнадёжно всё это клонирование, невозможно, но неизбежно. В № 3 не обходится без разнесчастной овечки Долли на фоне клонов, которые мрут, как мухи .

— Доктор Белчмен обвиняется в клонировании человека. Каков вердикт жюри? — Невиновен.

Над всеми этими тремя потоками парит, размахивая крыльями, так называемый этический вопрос, состоящий из: «Нельзя выращивать человека, как растение», «Нельзя выращивать клонов на убой, разбирая их на части», «Клонирование — уничтожение генофонда», «Клоны будут монстрами, уродами, а также недочеловеками, рабами и так далее». Вот именно — и так далее.

В обыденном сознании, меж тем, сохраняется представление, что теоретически можно, как в «Star Wars: Attack of the Clones» — в кратчайшие сроки наклепать не задумывающихся подчинённых, бесстрашных и одинаковых.

Обывателей не смущает и тот факт, что даже учёные-экстремалы из направления №2 упоминают о женщинах-добровольцах, которые, якобы, вынашивают клонов точно так же, как обычных детей. Так же, как обычно, опять же якобы, они собираются этих клонов рожать. Прямо искусственное оплодотворение какое-то — и всё, собственно. Причём, в тайне же — не проверишь, не измеришь.

Далее по порядку. Итак, первый пункт — выращивание стволовых клеток, прогресс в медицине и науке. Тут ни о каком клонировании человека речи нет — наоборот, учёные стараются максимально дистанцироваться от этой горячей темы. Но камнем преткновения стали эмбриональные клетки под предлогом, что нельзя и всё. Нельзя.

Больше всего шума — в США, где президент Буш строго-настрого наказал эмбрионов, какими бы безнадёжными они ни были, не трогать. Есть, говорит, альтернативные способы — плацента, пуповина или что там ещё — вот берите это и работайте со своими стволовыми клетками на здоровье. Буш — он вообще ведь против всего клонирования. От греха подальше.

Сенатор Дебора Ортиз решила пойти наперекор политике Буша.

Американские учёные сперва покорно приняли директиву и стали экспериментировать с разрешённым материалом, но только плохо стало как-то получаться — не годится, нужны эмбриональные. Но закон суров и, значит, пошла из Америки утечка мозгов: не желающие останавливаться на достигнутом, лишённые господдержки учёные устремились из США туда, где можно и где деньги. В Бомбей, к примеру.

Но 8 октября 2002 года, согласно сообщению АВС , сенатор-демократ от Калифорнии Дебора Ортиз (Deborah Ortiz) не выдержала и бросила вызов президенту Соединенных Штатов непосредственно перед государственным собранием: «Мой закон освобождает Калифорнию от действия политики Буша в отношении исследований стволовых клеток».

Не так-то часто сенатор возражает президенту, но тут ситуация особая: три года назад Дебора Ортиз потеряла мать, которая умерла от рака, так что борьбу с онкологическими заболеваниями сенатор считает делом своей жизни.

Короче говоря, по законопроекту Ортиз, штат Калифорния, наплевав на запреты Буша, начинает финансово поддерживать исследования стволовых клеток, и власти трёх-четырёх штатов готовы последовать этому примеру. Разумеется, там дебаты, конференции и так далее. Вот.

Теперь поговорим об опальных клонмейкерах, которых, как общеизвестно, у нас трое: Панайотис Завос (Panayiotis Zavos), Северино Антинори (Severino Antinori) и Бриджитт Буаселье (Brigitte Boisselier). Того же 8 октября 2002 года об их деятельности поступил ряд сообщений. Вот, к примеру, это .

RMX2010 — машина для клонирования компании Clonaid.

На этот раз смысл такой, что первый клонированный человек у них, значит, появится на свет либо в конце 2002-го, либо в начале 2003-го.

Больше других выступает Буаселье, директор компании Clonaid . У нас, говорит, с марта 2002 года женщины лежат с клонированными эмбрионами, причём несколько беременностей вполне жизнеспособны.

Ещё у Clonaid имеется чудо-клономашина — RMX2010 .

Надо сказать, что с Буаселье вообще тяжёлый случай: она состоит в секте Raelian cult, считающей, что люди появились в результате экспериментов по клонированию, которые проводили инопланетяне, а так же уверовавшей в то, что посредством клонирования был возрождён Иисус. Таким образом, Clonaid мало кто воспринимает всерьёз.

Бриджитт Буаселье обещает воспроизвести клон человека максимум в начале 2003 года.

Что же касается оставшихся двух — Завоса и Антинори, то по информации испанской газеты El Mundo, которую приводит InoPressa , они находятся в постоянном контакте друг с другом и Буаселье, в то же время, стараясь обеспечить максимальный уровень секретности своих работ.

В начале октября 2002-го Завос объявил, что возглавляемая им группа учёных проведёт первую имплантацию женщине клонированного эмбриона в конце года: «Я не Франкенштейн и не собираюсь создавать монстров, — подчеркнул Завос.

— Если мы решим подождать, наверняка за нас это сделают другие. Делая шаг вперёд, мы будет действовать максимально осторожно. Могу вас заверить, что в моей группе работают Майклы Джорданы в области клонирования».

Ну да, а также Жоресы Алфёровы в области баскетбола. А итальянец Северино Антинори, тем временем, отмалчивается. Говорят, работает. В общем, ждём вестей и новых обещаний — так что ли?

Все трое опальных клонмейкеров вместе. Слева направо: Антинори, Завос, Буаселье.

По третьему направлению с условным обозначением «Разное» необходимо отметить сообщение от 10 сентября 2002 года. Напомним его: учёные из Центра по исследованию генома института биомедицинских исследований Уайтхеда в Кембридже (Center for Genome Research at the Whitehead Institute for Biomedical Research in Cambridge) пришли к выводу, что в результате клонирования животных почти всегда получается существо с теми или иными отклонениями.

Таким образом, исследование, по их мнению, с небывалой ясностью выявило, что воспроизведение людей путём клонирования — крайне неудачная идея.

Рудольф Джениш (Rudolf Jaenisch) и его коллеги в ходе Слушаний в Национальной академии наук США (Proceedings of the National Academy of Sciences) сообщили, что процесс клонирования подвергает опасности целостность генетической структуры животного.

Были изучены 10 тысяч генов, что стало самым масштабным исследованием в данной области. Выяснилось, что в плацентах клонированных мышей в одном гене из каждых 25-ти имеются отклонения от нормы.

Обложка книжки, которую можно купить через сайт Clonaid за $19,95.

Менее серьёзным генетическим изменениям подверглась печень клонированных мышей. Всё это говорит о том, что клонам, так или иначе, угрожают пневмония, проблемы с печенью, быстрое старение и преждевременная смерть — такие результаты могут стать последним гвоздём, забитым в крышку гроба потенциального клонирования человека.

Учёные сообщили: их исследование доказывает, что независимо от того, насколько нормальным клонированное животное появилось на свет, в будущем проблемы со здоровьем будут расти как снежный ком. Таким образом, клонирование с целью создания человека очень опасно и неэтично.

В приведённом выше сообщении, вылившемся, кстати, в , думается, содержится и ответ упоминавшимся обывателям: клоны не могут быть точной копией того, чьи клетки были использованы.

Гвоздём в крышку гроба — не гвоздём, но 10 сентября 2002 года один из «отцов» Долли Алан Колмэн (Alan Colman), встречаясь с членами Ассоциации зарубежных корреспондентов (Foreign Correspondent Association), сообщил, что клонирование человека неизбежно — рано, говорит, или поздно, но клонируют, вот увидите.

Северино Антинори пока воздерживается от сенсационных заявлений, которых он, впрочем, и так сделал уже немало.

При этом Колмэн, конечно же, не забыл упомянуть, что у Антинори и компании ничего не выйдет, однако: «Без сомнения, есть группы учёных по всему миру, которые при наличии нужных денег осуществят клонирование человека. На мой взгляд, есть и люди, имеющие много денег, у которых хватит ума, чтобы обеспечить деньгами такой проект».

Кому интересно — вот отчёт о встрече корреспондентов с Колмэном. Теперь давайте попробуем суммировать, что мы имеем на сегодняшний день в отношении клонирования человека. Получается, что-то среднее между невозможностью и неизбежностью — как и раньше.

Некоторым процесс клонирования представляется именно так.

Представим, что какую-нибудь Буаселье или неважно кого покажут нам по телевизору с новорожденным на руках и скажет она: «Вот он — первый клонированный человек!»

И что? Ей, само собой, не поверят, затребуют ребёнка на исследование.

Если отдаст, будут этого «клона» мурыжить до последнего, и если не сведут его в могилу экспериментами, то скончается он, прости Господи, от инфекции какой — кто знает, что там с санитарией в секретных лабораториях.

Тем более, что сообщению о повреждённых генах у клонов нет особых оснований не верить — но тут понадобятся, возможно, годы.

И потом мы, блин, помним, чем бывает первый блин...

Ученые в США пришли к выводу, что клонирование человека, по всей вероятности, неосуществимо. После проведения нескольких сотен опытов на обезьянах было установлено, что устройство яйцеклеток приматов, к которым относится и человек, делает их клонирование практически невозможным. Ни одну обезьяну клонировать так до сих пор и не удалось. Клонирование человека может оказаться неосуществимым, сообщает BBC . Причины этого кроются в биологии.

ПО ТЕМЕ

К выводам о невозможности клонирования пришли ученые США. По их словам, сотни попыток создать клон обезьяны провалились. Дело в том, что устройство яйцеклеток приматов, в том числе и человека, делает их клонирование практически невозможным, говорят ученые.

Клонированию успешно подвергаются некоторые животные, например мыши и овцы, однако появляются все более явные признаки того, что не все виды можно воспроизвести искусственным путем.

Это исследование, результаты которого были опубликованы в журнале "Science", добавляет аргументов тем, кто не верит в заявления компании Clonaid о создании первых человеческих клонов.

Напомним, что эта компания, созданная последователями уфологического культа раэлитов, сообщила о клонировании человека, однако не предоставила убедительных доказательств этому.

Большинство ученых сходятся на том, что попытки создать клон человека опасны и сомнительны с моральной точки зрения. Многие клоны животных появлялись на свет с теми или иными отклонениями. Здоровыми они рождались редко.

Исследователи университета Питтсбургской школы медицины попытались клонировать макаку-резус с помощью технологии, использовавшейся при создании клона знаменитой овцы Долли.

После сотен попыток им так ни разу не удалось добиться беременности у носителя клона. Другим группам ученым также не удалось клонировать обезьян.

Судя по всему, у приматов при делении клонированных клеток ДНК не передается новым клеткам должным образом. Некоторые клетки в итоге получают либо слишком много, либо слишком мало ДНК, и оказываются нежизнеспособными.

Ученые полагают, что попытки клонировать других приматов, в том числе и человека, похоже, обречены на провал.

"Таким образом подтверждается тот факт, что шарлатаны, сообщавшие о клонировании человека, никогда не понимали клеточной биологии настолько хорошо, чтобы добиться успеха", - заявил журналу "Sceince" руководитель группы доктор Джеральд Шаттен.

Тестирование по теме «Селекция»

1. Аутбридинг - это:

1)скрещивание между неродственными особями одного вида;

2)скрещивание различных видов;

3)близкородственное скрещивание;

4)нет верного ответа.

2. Гибриды, возникающие при скрещивании различных видов:

1)отличаются бесплодностью;

2)отличаются повышенной плодовитостью;

3)дают плодовитое потомство при скрещивании с себе подобными;

4)всегда бывают женского пола.

3. Полиплоидия заключается в:

1)изменении числа отдельных хромосом;

2)кратном изменении гаплоидных наборов хромосом;

3)изменении структуры хромосом;

4)изменении структуры отдельных генов.

4. Центром происхождения культурных растений считаются районы, где:

1)обнаружено наибольшее число сортов данного вида;

2)обнаружена наибольшая плотность произрастания данного вида;

3)данный вид впервые выращен человеком;

4)нет верного ответа.

5. Близкородственное скрещивание применяют с целью:

1)поддержания полезных свойств организма;

2)усиления жизненной силы;

3)получения полиплоидных организмов;

4)закрепления ценных признаков.

6. Гетерозис наблюдается при:

1)близкородственном скрещивании;

2)скрещивании отдаленных линий;

3)вегетативном размножении;

4)искусственном оплодотворении.

7. В клеточной инженерии при гибридизации используют следующие клетки:

1)половые;

2)соматические;

3)недифференцированные эмбриональные;

4)все перечисленные.

8. В основе селекции лежит:

1)движущий естественный отбор

2)искусственный отбор

3)стабилизирующий естественный отбор

4)борьба за существование

9. Искусственный мутагенез применяется в:

1)селекции собак 2)лечении людей

3)селекции микроорганизмов 4)селекции крупного рогатого скота

10. Клонирование невозможно из клеток:

1)эпидермиса листа 2)корня моркови

3)зиготы коровы 4)эритроцита человека

11. Учение о центрах происхождения культурных растений сыграло важную роль в:

1)изучении мутационного процесса

2)развитии метода прививки

3)одомашнивании растений

4)развитии систематики культурных растений

12. На ранних этапах одомашнивания растений и животных применялся:

1)искусственный отбор 2)метод ментора

3)бессознательный отбор 4)межпородное скрещивание

13. Обработка картофеля колхицином ведет к:

1) полиплоидии 3) гибридизации

2) генным мутациям 4) гетерозису

14. Одним из эффектов, сопровождающих получение чистых линий в селекции, является:

1)гетерозис 2)бесплодие потомства

3)разнообразие потомства 4)снижение жизнеспособности

15. Разработать способы преодоления бесплодия межвидовых гибридов впервые удалось:

1)К.А. Тимирязеву; 2)И.В. Мичурину;

3)Г.Д. Карпеченко 4) Н.И. Вавилову

16. Однородную группу растений с хозяйственно-ценными признаками, созданную человеком, называют:

1)видом 2)породой;

3)сортом; 4) штаммом

17. Примером применения в селекции искусственного мутагенеза является:

1)облучение семян пшеницы рентгеновскими лучами

2)прививка дикой формы яблони на культурную

3)пересадка гена в бактерию

4)выведение декоративных растений

18. Наиболее эффективным методом селекции животных является:

1)отдаленная гибридизация 2)полиплоидия

3)искусственный мутагенез 4)межпородное скрещивание и отбор

19.«Эволюцией, направляемой волей человека», по выражению Н. Вавилова, можно назвать:

1)получение модификационных изменений

2)выведение новых пород и сортов

3)естественный отбор

20. Явление, которое лежит в основе получения высокоурожайных отдаленных гибридов, называется:

1)инбридинг 3) гетерозис

2) самоопыление 4) полиплоидия

21. Центр происхождения культурного томата:

1)Южно-американский; 2) Южно-азиатский тропический;

3)Средиземноморский; 4)Среднеамериканский

22. Явление, при котором происходит многократное увеличение числа хромосом в геноме, называется:

1)полиплоидия 2)полимерия

3) поливалентность 4) полигамия

23. Многообразие пород собак является результатом:

1)естественного отбора 2)искусственного отбора

3)мутационного процесса 4)модификационной изменчивости

24. Полиплоидия как правило встречается у:

1)человека 2)всех живых существ

3)животных 4)растений

25. В биотехнологических процессах чаще всего используются:

1)позвоночные животные 2)бактерии и грибы

26. Гетерозис возникает при:

1)близкородственном скрещивании

2)вегетативном размножении

3)скрещивании отдаленных линий

4)мутагенезе

27. Центр происхождения таких растений, как виноград, олива, капуста, чечевица, находится в:

1)Восточной Азии 2)Центральной Америке

3)Южной Америке 4)Средиземноморье

28. Инбридинг — это:

1)скрещивание различных видов

2)скрещивание близко родственных организмов

3)скрещивание различных чистых линий

4)увеличение числа хромосом у гибридной особи

29. Порода собак представляет собой:

1)род 2)вид

3)природную популяцию 4)искусственную популяцию

30. Центр происхождения кукурузы:

1)Абиссинский 2)Центральноамериканский

3)Южноазиатский 4)Восточноазиатский

31. Для селекции микроорганизмов наиболее часто используются методы:

1)искусственного мутагенеза

2)межвидовой гибридизации

3)искусственной полиплодизации

4)близкородственных скрещиваний

32. Методы создания новых сортов растений и пород животных изучает наука:

1)селекция; 2)цитология;

3)эмбриология; 4)генетика

33. Выдающийся отечественный ученый и селекционер, занимавшийся выведением новых сортов плодовых деревьев:

3)Г.Д. Карпеченко; 4)B.C. Пустовойт

34. Центры многообразия и происхождения культурных растений установил:

1)Н.И. Вавилов; 2)И.В. Мичурин;

3)Б.Л. Астауров; 4)Г.Д. Карпеченко

35. Главная задача селекции:

1)изучение строения и жизнедеятельности культурных

растений и домашних животных;

2)исследование закономерностей наследования признаков;

3)изучение взаимосвязи организмов и среды их обитания;

4)выведение новых сортов растений и пород животных

36. При получении чистых линий у растений снижается жизнеспособность особей, так как

1) рецессивные мутации переходят в гетерозиготное состояние

2) увеличивается число доминантных мутаций

3) рецессивные мутации становятся доминантными

4) рецессивные мутации переходят в гомозиготное состояние

37. Близкородственное скрещивание в селекции животных используют

1) для закрепления желательных признаков

2) для улучшения признаков

3) для увеличения гетерозиготных форм

4) для отбора наиболее продуктивных животных

38. Получением гибридов на основе соединения клеток разных организмов с применением специальных методов занимается

1) клеточная инженерия 2) микробиология

3) систематика 4) физиология

39. Выделением из ДНК какого-либо организма определенного гена или группы генов, включением его в ДНК вируса, способного проникать в бактериальную клетку, с тем чтобы она синтезировала нужный фермент или другое вещество, занимается

1)клеточная инженерия 2)генная инженерия

3)селекция растений 4)селекция животных

40. Метод получения новых сортов растений путем воздействия на организм ультрафиолетовыми или рентгеновскими

лучами, называют

1)гетерозисом 2)полиплоидией

3)мутагенезом 4)гибридизацией

41. В основе создания селекционерами чистых линий культурных растений лежит процесс

1)сокращения доли гомозигот в потомстве

2)сокращения доли полиплоидов в потомстве

3)увеличения доли гетерозигот в потомстве

4)увеличения доли гомозигот в потомстве

42. Большое значение имело открытие центров многообразия и происхождения культурных растений Н.И. Вавиловым для

1)селекции 2)эволюции

3)систематики 4)биотехнологии

43. Отрасль хозяйства, которая производит различные вещества на основе использования микроорганизмов, клеток и

тканей других организмов —

1)бионика 2)биотехнология

3)цитология 4)микробиология

О. В. САБЛИНА,

кандидат биологических наук, СУНЦ НГУ

КЛОНИРОВАНИЕ ЖИВОТНЫХ

Пожалуй, ни одно из достижений биологической науки не вызывало такого накала страстей в обществе, как клонирование млекопитающих. Если некоторые люди, как биологи, так и не имеющие отношения к «Life Sciences» (наукам о жизни), с восторгом приняли появившуюся, хотя бы и теоретически, возможность клонирования человека и готовы завтра же клонироваться, то большинство неспециалистов отнеслись к такой возможности, мягко говоря, очень настороженно.

Бурные дебаты в средствах массовой информации привели к тому, что среди населения оказалось распространенным мнение о крайней опасности подобных исследований. Этому немало способствовали «клоны», «заселившие» художественную литературу и кино. Несколько лет назад одна из околонаучных группировок заявила о намерении клонировать Гитлера, для того чтобы его повесить за совершенные преступления. Это, в свою очередь, породило опасения, что диктаторы типа Гитлера могут увековечить свою власть, передав ее своим клонам. В большинстве подобных представлений клоны человека - «ненастоящие люди», тупые и злобные, а клонированные животные и растения угрожают погубить всю биосферу. Здесь следует особо отметить, что люди нередко путают клонирование и трансгенез, тогда как это абсолютно разные вещи. Действительно, при получении трансгенных многоклеточных животных применяют клонирование, однако в этом случае клонирование - не цель, а средство. Клонирование без транс-генеза - прием, широко используемый в самых разных по своим целям проектах.

Насколько обоснованы эти страхи и надежды? Представляется очень важным формирование спокойного взвешенного суждения относительно перспектив и возможных последствий этих исследований. Для этого нужно ответить на несколько основных вопросов, что мы и попытаемся сделать.

Итак, что же такое клонирование? Как клонируют животных? Почему ученые этим занимаются? Для чего можно использовать технику клонирования животных? Допустимо ли клонирование человека?

ЧТО ТАКОЕ КЛОН?

Греческое слово κλ w n означает побег, отросток. Сейчас клонами называются особи животных или растений, полученные путем бесполого размножения и имеющие полностью идентичные генотипы. Клоны очень широко распространены среди растений - все сорта вегетативно размножаемых культурных растений (картофель, плодовые и ягодные растения, гладиолусы, тюльпаны и т.д.) являются клонами. Разработанная в настоящее время техника микроклонального размножения позволяет получать за короткое время огромное количество генетически идентичных экземпляров даже таких растений, которые в естественных условиях вегетативно не размножаются.

У животных такой тип размножения распространен значительно меньше. Тем не менее известно более 10 ООО видов многоклеточных животных, размножающихся путем деления одного организма на два или даже несколько частей (аутофрагмен-тация), которые вырастают в полноценные организмы. Эти новые организмы также являются клонами. Естественные клоны, возникающие путем обособления части клеток организма и развития из них полноценной особи, характерны не только для таких примитивных животных, как губки или хрестоматийные гидры. Даже такие достаточно высоко организованные животные, как морские звезды и черви, могут размножаться делением. Но позвоночные или насекомые такой способности лишены. Тем не менее клоны, возникшие естественным путем, встречаются даже у млекопитающих.

Природными клонами являются так называемые монозиготные близнецы, которые происходят из одной оплодотворенной яйцеклетки. Это происходит, когда зародыш на самых ранних стадиях дробления разделяется на отдельные бластомеры и из каждого бластомера развивается самостоятельный организм. Например, у американского девятиполосного броненосца всегда рождается по четыре монозиготных близнеца. Разделение зародыша на стадии четырех бластомеров на самостоятельные зародыши - нормальное явление для этого млекопитающего.

Такие близнецы представляют собой как бы обособившиеся части одного организма и имеют один и тот же генотип, т. е. являются клонами.

Монозиготные (или идентичные) близнецы у человека также являются клонами. Наибольшее известное число родившихся монозиготных близнецов у человека равняется пяти. Вероятность рождения близнецов у человека невелика - среди белого населения Европы и Северной Америки она в среднем составляет около 1%. Реже всего близнецы рождаются в Японии. В африканском племени йоруба частота близнецов составляет 4,5% всех рождений, а в некоторых районах Бразилии - до 10%, однако только незначительная часть из них являются монозиготными. Существуют и семьи с генетической предрасположенностью к рождению близнецов, но тоже только дизиготных.

Одновременная овуляция обусловлена определенным сбоем в работе гормональной системы, который может иметь генетическую природу. Причина же, по которой происходят разделение зародыша и образование монозиготных близнецов у человека, неизвестна. Частота этого явления - около 0,3% во всех популяциях человека.

Очень редко случается, что по неизвестной причине зародыш разделяется не до конца. Тогда рождаются сросшиеся (вернее, недоразделившиеся), так называемые сиамские близнецы. Примерно четверть всех идентичных близнецов являются «зеркальными», например, один из близнецов левша, другой правша, у одного волосы на макушке закручены по часовой стрелке, у другого против, у одного сердце расположено слева, а печень справа, у другого - наоборот. Ученые считают, что «зеркальность» близнецов является следствием разделения эмбриона на достаточно поздней стадии развития.

Таким образом, клоны животных и человека - нормальное природное явление. Этот факт сразу позволяет ответить на некоторые вопросы в связи с клонированием человека: клоны - абсолютно нормальные, полноценные люди, отличающиеся от всех остальных людей только тем, что имеют генетического двойника. Они являются самостоятельными, автономными организмами, хотя и имеющими идентичные генотипы. Поэтому любые надежды достичь бессмертия путем клонирования абсолютно беспочвенны. По этой же причине клоны не могут нести никакой ответственности за поступки, совершенные их «генетическим оригиналом».


ЭКСПЕРИМЕНТАЛЬНОЕ КЛОНИРОВАНИЕ ЖИВОТНЫХ

Клонированием называют искусственное получение клонов животных (в случае клонирования растений чаще пользуются терминами «вегетативное размножение», «меристемная культура»). Поскольку высшие животные не могут размножаться вегетативно, то для получения клона можно в принципе воспользоваться тремя методами:


удвоить набор хромосом в неоплодот-воренной яйцеклетке, получив таким образом диплоидную яйцеклетку, и заставить ее развиваться без оплодотворения;
искусственно получить монозиготных близнецов, разделив начавший развиваться эмбрион;
удалить ядро из яйцеклетки, заменив его на диплоидное ядро соматической клетки, и тоже заставить развиваться такую «зиготу».


Все эти три возможности ученые использовали для клонирования животных.

Первый способ удается применить не для всех животных. Еще в 30-е гг. XX в. Б.Л. Астаурову удалось с помощью термического воздействия активировать неопло-дотворенное яйцо тутового шелкопряда к* развитию, блокировав при этом прохождение первого деления мейоза. Естественно, ядро при этом оставалось диплоидным. Развитие такой диплоидной яйцеклетки заканчивалось вылуплением личинок, точно повторяющих генотип матери. Естественно, при этом получались только самки. К сожалению, разводить самок экономически невыгодно, так как при большей затрате корма они дают коконы худшего качества. В.А. Струнников усовершенствовал этот метод, разработав способ получения клонов тутового шелкопряда, состоящих только из особей мужского пола. Для этого на ядро яйцеклетки воздействовали гамма-лучами и высокой температурой. Это делало ядра, не способными к оплодотворению. Ядро сперматозоида, проникшего в такое яйцо, удваивалось и приступало к делению. Это приводило к развитию самца, повторявшего генотип отца. Правда, полученные клоны для промышленного шелководства непригодны, но их используют в селекции для получения эффекта гетерозиса. Это позволяет резко ускорить и облегчить получение выдающегося по продуктивности потомства. Сейчас эти методы широко применяются в шелководстве в Китае и Узбекистане.

К сожалению, успех с тутовым шелкопрядом является исключением - у других животных получить клоны таким способом не удается. Исследователи пробовали удалить один из пронуклеусов из оплодотворенной яйцеклетки и удваивали число хромосом другого, обрабатывая их веществами, разрушающими микротрубочки веретена деления. Получались диплоидные клетки, гомозиготные по всем генам (содержащие либо два материнских, либо два отцовских генома). Такие зиготы начинали дробиться, однако развитие прекращалось на ранней стадии и получить таким способом клоны млекопитающих оказалось невозможно. Были сделаны попытки пересадить пронуклеусы из одной оплодотворенной яйцеклетки в другую. Оказалось, что полученные таким способом зародыши развивались нормально только в том случае, если один пронуклеус представлял собой ядро яйцеклетки, а другой - сперматозоида. Эти эксперименты показали, что для нормального развития эмбрионов млекопитающих необходимы два разных генома - материнский и отцовский. Дело в том, что при формировании половых клеток имеет место геномный импринтинг - метилирование участков ДНК, что приводит к выключению метилированных генов. Это выключение остается на всю жизнь. Поскольку в мужских и в женских половых клетках выключаются разные гены, то для нормального развития организма нужны оба генома - одна работающая копия гена должна быть.

Второй метод - разделение эмбриона на ранних стадиях дробления в эмбриологии используют очень давно, правда в основном на морских ежах и лягушках. Именно таким способом были получены данные о способности выделенных из зародыша бластоме-ров дать начало полноценному организму. Клоны-монозиготные близнецы млекопитающих были получены существенно позже, но искусственное разделение эмбрионов и последующая их имплантация «суррогатным матерям» уже применяются в селекции сельскохозяйственных животных для получения большого числа потомков от особо ценных родителей. В 1999 г. таким способом была клонирована обезьяна. Оплодотворение было проведено в пробирке. Зародыш на стадии восьми клеток был разделен на четыре части, и каждая двуклеточная часть была имплантирована в матку другой обезьяны. Три зародыша при этом развиваться не стали, а из четвертого родилась обезьянка, которую назвали Тетра (Четвертинка).

Самое знаменитое клонированное животное, овечка Долли, была клонирована с помощью третьего метода - переноса генетического материала соматической клетки в яйцеклетку, лишенную собственного ядра.
Метод пересадки ядер был разработан еще в 40-х гг. XX в. русским эмбриологом Г.В. Лопашовым, работавшим с яйцеклетками лягушки. Правда, взрослых лягушек он не получил. Позднее англичанину Дж. Гёрдону удалось заставить яйцеклетки лягушки с чужим ядром развиваться до получения взрослых особей. Это было выдающееся достижение - ведь он пересаживал в яйцеклетку ядра дифференцированных клеток взрослого организма. Он использовал клетки плавательной перепонки и клетки эпителия кишечника. Но и у него до взрослого состояния развивалось не более 2% таких яйцеклеток, причем выросшие из них лягушки отличались меньшими размерами и пониженной жизнеспособностью по сравнению с их нормальными сверстниками.

Пересадить ядро в яйцеклетку млекопитающего значительно труднее, так как она примерно в 1000 раз мельче, чем яйцеклетка лягушки. В 1970-х гг. в нашей стране в Институте цитологии и генетики в Новосибирске на мышах это пытался сделать замечательный ученый Л.И. Корочкин. К сожалению, его работы не получили продолжения из-за трудностей с финансированием. Зарубежные ученые продолжали исследования, однако операция трансплантации ядра оказалась слишком травматичной для мышиных яйцеклеток. Поэтому экспериментаторы пошли другим путем - стали просто проводить слияние яйцеклетки, лишенной собственного ядра, с целой неповрежденной соматической клеткой.

Группа исследователей из Рослинско-го института в Шотландии, возглавляемая Я. Вилмутом, клонировавшие Долли, использовали для слияния клеток электрический импульс. Они удаляли ядра из зрелых яйцеклеток, затем с помощью микропипетки вводили под оболочку яйцеклетки соматическую клетку, выделенную из молочной железы овцы. С помощью электрического удара клетки сливались и в них стимулировалось деление. Затем, после культивирования в течение 6 дней в искусственных условиях, начавший развиваться эмбрион на стадии морулы имплантировали в матку специально подготовленной овцы другой породы (хорошо отличавшейся фенотипически от донора генетического материала). Рождение овечки Долли стало громкой сенсацией, а у некоторых ученых возникли сомнения в том, что она действительно была клоном. Однако специальные проведенные исследования ДНК показали, что Долли - настоящий клон.

В дальнейшем техника клонирования млекопитающих была усовершенствована. Группе ученых из университета Гонолулу под руководством Риузо Янагимачи удалось с помощью изобретенной ими микропипетки осуществить перенесение ядра соматической клетки непосредственно в яйцеклетку. Это позволило им обойтись без электрического импульса, который был далеко небезопасен для живых клеток. Кроме того, они использовали менее дифференцированные клетки - это были клетки кумулуса (соматических клеток, окружающих яйцеклетку и сопровождающих ее во время движения по яйцеводу). К настоящему времени этим методом клонированы и другие млекопитающие - корова, свинья, мышь, кошка, собака, лошадь, мул, обезьяна.

ЗАЧЕМ КЛОНИРОВАТЬ ЖИВОТНЫХ?

Несмотря на огромные успехи, клонирование млекопитающих остается сложной и дорогостоящей процедурой. Почему же ученые не оставляют эти эксперименты? Прежде всего потому, что это... интересно. Причем не просто любопытно - получится или нет, уже ясно, что получится. Клонирование млекопитающих чрезвычайно важно для фундаментальной науки. Это уникальный инструмент, позволяющий исследовать один из самых сложных и интригующих вопросов биологии - как, какими путями информация, записанная последовательностью нуклеотидов в ДНК, реализуется во взрослом неповторимом организме, каким образом осуществляется точнейшее взаимодействие тысяч генов, каждый из которых «включается» и «выключается» именно в то время и в той клетке, где это необходимо. Известно, что некоторые гены, работающие на самых ранних этапах эмбриогенеза, в ходе дальнейшего развития и дифферен-цировки клеток необратимо выключаются.

Как это происходит? Можно ли заставить дифференцированную клетку претерпеть обратную дифференцировку? На последний вопрос без клонирования ответить вообще невозможно. Сам факт, что клонирование млекопитающих удается, вроде бы говорит о том, что обратная дифференцировка возможна. Однако не все так просто. Часто животные клонированы из недифференцированных - эмбриональных стволовых клеток или из клеток кумулуса. В других случаях, возможно, также были использованы стволовые клетки. В частности, овечка Долли была клонирована из клетки молочной железы беременной овцы, а при беременности под действием гормонов стволовые клетки молочной железы начинают размножаться, так что вероятность того, что экспериментаторы возьмут именно стволовую клетку, повышается. Предполагают, что именно так и было с Долли. Этим может объясняться и очень малая эффективность клонирования - ведь стволовых клеток в ткани немного.

Но, конечно, если бы у метода клонирования не было хорошо просматриваемых практических выходов, исследования не были бы столь интенсивными. Какая же практическая польза может быть от клонированных животных? В первую очередь, клонирование высокопродуктивных домашних животных может быть использовано для получения в короткий срок больших количеств элитных коров, ценных пушных зверей, спортивных лошадей и т.д. Некоторые ученые считают, что клонирование никогда не будет широко применяться в животноводстве из-за того, что эта процедура весьма дорогая. Кроме того, условием селекции всегда было генетическое разнообразие, клонирование же, тиражируя один генотип, сужает это разнообразие. Тем не менее поскольку половое размножение необходимо связано с рекомбинацией, разрушающей сочетания аллелей, клонирование может помочь сохранить уникальные генотипы. Клонирование путем разделения начавших дробиться эмбрионов уже сейчас используется в селекции крупного рогатого скота.

Особые надежды ученые возлагают на клонирование диких животных, которым грозит исчезновение. Уже в настоящее время создаются «Замороженные Зоопарки» - образцы клеток таких животных, хранящиеся в замороженном виде при температуре жидкого азота (-196°С). В Америке уже родились два детеныша дикого быка бантенга, клонированные из клеток животного, умершего в 1980 г. Его клетки были заморожены и более 20 лет хранились в жидком азоте. Клонированы также другой вид дикого быка гаур, европейский дикий баран, дикие африканские степные кошки.

Клонирование кошек - особо интересный и важный эксперимент, проведенный в Институте Природы в городе Одюбоне (США). Там были получены два клона-самки от одной кошки-донора и один клон-самец от кота по имени Джаз. Джаз, в свою очередь, был выращен из эмбриона, который в течение 20 лет хранился в замороженном состоянии в жидком азоте, а потом был выношен и рожден обычной домашней кошкой. В 2005 г. обе кошки-клоны общими усилиями родили восьмерых котят. Отцом всех восьмерых был кот-клон Джаз. Этот опыт показал, что клоны способны к нормальному размножению. Следует, однако, понимать, что с помощью клонирования вряд ли удастся «воскресить» исчезнувший вид. Тем не менее это может помочь сохранить генофонд, если использовать полученные клоны в скрещиваниях с животными, содержащимися в зоопарках. Такое использование клонов может помочь избежать негативных последствий близкородственного скрещивания, неизбежного при малой численности вида.

Здесь следует сказать и о надеждах клонировать уже исчезнувших животных - мамонта, тасманийского сумчатого волка, зебры квагги. Оптимисты предполагают, что можно использовать ДНК этих животных, сохранившуюся либо в вечной мерзлоте, либо в законсервированных тканях. Однако предпринятая попытка клонировать тасманийского сумчатого волка, последнийэкземпляр которого погиб в зоопарке в 1936 г., не удалась. Это и неудивительно, так как в распоряжении ученых не было живых клеток, а только образцы тканей, хранившиеся в спирте. Из них была выделена ДНК, но она оказалась слишком поврежденной, да и существующие в настоящее время методы не позволяют клонировать животных») не имея достаточного количества живых клеток. По этой же причине мала вероятность когда-либо клонировать мамонта. Во всяком случае, все предпринятые попытки культивировать клетки мамонта, пролежавшие тысячелетия в вечной мерзлоте, оказались безуспешными. Кроме того, следует иметь в виду, что если даже и удалось бы получить и вырастить один клон мамонта или квагги, это не было бы воскрешением вида. Из одного или даже из нескольких экземпляров получить вид нельзя. Считается, что для устойчивого существования и воспроизведения вида необходимо по крайней мере несколько сотен особей. Поэтому ископаемая ДНК или ДНК из хранящихся в спирте тканей достаточна для анализа или даже для трансгенеза, но недостаточна для клонирования. Хотя известны случаи выживания вида после катастрофического падения численности. Один из таких видов - гепард. Генетический анализ показывает, что в его истории был момент, когда его поголовье составляло 7-10 особей. Хотя гепарды и выжили, последствия близкородственного скрещивания остались - частое бесплодие, мертворождения и другие трудности с размножением. Другой такой вид - человек. В эволюционной истории человека было не менее двух эпизодов прохождения резкого падения численности вида, а для американских индейцев - даже больше (заселение Америки шло из Восточной Сибири по Берингийскому перешейку очень небольшими группами - 7-10 человек). Именно поэтому генетическое разнообразие человека невелико, следствием чего является разнообразие фенотипическое - многие гены находятся в гомозиготном состоянии.

Безусловно, незаменимым методом клонирование является для получения трансгенных животных. Хотя применяются и другие методы получения трансгенных животных, именно клонирование позволяет получать животных с заданными свойствами для практических нужд. В том же Рослинском институте в Эдинбурге, где родилась Долли, были получены и клонированные овечки Полли и Молли. Для их клонирования были использованы генетически измененные клетки, культивировавшиеся в искусственных условиях. Эти клетки, кроме обычных овечьих генов, несли человеческий ген IX фактора свертываемости крови.

Генетическая конструкция содержала промотор, экспрессирующийся в клетках молочной железы. Поэтому белок, кодируемый этим геном, выделялся с молоком. Полли была первым клонированным трансгенным млекопитающим. Ее рождение открыло новые перспективы в лечении некоторых заболеваний человека. Ведь многие болезни связаны с нехваткой определенного белка - фактора свертываемости или гормона. До сего времени такие лекарства можно было получать только из донорской крови. А ведь количество гормона в крови очень мало! Кроме того, использование препаратов крови чревато инфекционными заболеваниями - не только СПИДом, но и вирусными гепатитами, которые не менее опасны. А трансгенных животных можно тщательно отобрать и проверить, содержать их на чистейших альпийских пастбищах. Ученые подсчитали, что для того чтобы обеспечить лекарственным белком всех (!) больных гемофилией на Земле, потребуется не слишком большое стадо трансгенных животных - 35-40 коров. При этом провести трансгенез и клонирование нужно-то всего только двух животных - самки и самца, а они, размножаясь естественным путем, передадут нужный ген потомству. При этом, поскольку у самцов ген в молочной железе не работает вообще, а у самок работает только во время лактации и продукт сразу же выводится с молоком из организма, никаких неудобств или нежелательных последствий для животных этот чужой ген не представляет. Сейчас используют в качестве таких биореакторов овец, коз, кроликов и даже мышей. Правда, коровы дают существенно больше молока, но и размножаются они гораздо медленнее и лактировать начинают позже. Есть и другие возможности использования трансгенных клонов и в научных, и в практических целях, но здесь мы это рассматривать не будем.

ТРУДНОСТИ И ПРОБЛЕМЫ, ВОЗНИКАЮЩИЕ ПРИ КЛОНИРОВАНИИ МЛЕКОПИТАЮЩИХ

Несмотря на впечатляющие успехи, пока нельзя утверждать, что клонирование стало обычной лабораторной методикой. Это по-прежнему очень сложная процедура, не слишком часто приводящая к ожидаемому результату. Какие же трудности возникают при клонировании животных?
В первую очередь, это низкая эффективность клонирования. Процедуры, применяемые при клонировании млекопитающих, являются весьма травмирующими для клеток. Далеко не всем клеткам удается их благополучно пережить. Не все начавшие развиваться эмбрионы доживают до рождения. Так, чтобы получить Долли, пришлось для выделения яйцеклеток прооперировать 40 овец (см. рис. 5). Из 430 яйцеклеток удалось получить 277 диплоидных «зигот», из которых только 29 начали развиваться и были имплантированы «суррогатным» матерям. Из них дожил до рождения всего один эмбрион - Долли. Для получения клонированной лошадки Прометеи было «сконструировано» около 840 эмбрионов, из них только 17 развились до того, чтобы их можно было имплантировать «матерям». Четыре из них стали развиваться, но до рождения дожила только одна Прометея.

Другой серьезной проблемой является здоровье родившихся клонов. Как правило, когда сообщается о рождении очередного клона, подчеркивается его отменное здоровье. Действительно, многие клонированные животные, вполне здоровые при рождении, доживали до взрослого состояния и рождали нормальных детенышей. Однако потом у них проявлялись нарушения со стороны разных систем органов. Так, Долли родилась здоровой и родила нескольких здоровых ягнят, но потом начала стремительно стареть и прожила вдвое меньше, чем обычная овца. Трансгенные Полли и Молли, также клонированные в Рослинском институте, прожили еще меньше. Успешно размножились клонированные степные кошки. Правда, о продолжительности их жизни данных пока нет. А вот бычок гаур, также производивший при рождении впечатление здорового, прожил всего два дня из-за кишечного заболевания. Вопрос о здоровье клонов еще нельзя считать окончательно решенным - результаты разных исследователей противоречивы. По некоторым данным очень многие клоны обладают слабым иммунитетом, подвержены простудным и желудочно-кишечным заболеваниям и стареют в 2-3 раза быстрее своих генетических родителей. Исследования японских ученых показали, что у клонированных мышей серьезно нарушено функционирование примерно 4% генов.

Но, пожалуй, самым обескураживающим оказалось то, что клоны могут довольно сильно отличаться от оригинала. Еще В.А. Струнниковым на тутовом шелкопряде было установлено, что, несмотря на одинаковые генотипы, члены одного клона оказываются непохожими по целому ряду признаков. В некоторых клонах это разнообразие оказалось даже большим, чем в обычных, генетически разнородных, популяциях. Несколько лет назад в США родилась очередная клонированная кошечка, которую назвали Сиси (Сс, CopyCat). Генетической мамой ее была трехцветная кошка Рэйн-боу (Радуга). Сиси оказалась непохожей на маму - двухцветной. Но анализ ДНК показал, что она действительно является клоном Радуги. Различия связаны с тем, что ген рыжей окраски находится в Х-хромосоме. У самок одна из Х-хромосом оказывается инактивированной в раннем эмбриогенезе. Инактивируются Х-хромосомы случайно, состояние инактивированности в клетке и клетках-потомках сохраняется на всю жизнь. У гетерозиготной кошки рыжими оказываются те клетки, где инактивирована «нерыжая» Х-хромосома. Клон был получен из одной соматической клетки, в которой одна из Х-хромосом уже была инактивирована. У Сиси инактивированной оказалась «рыжая» Х-хромосома. У млекопитающих в Х-хромосоме находится около 5% всех генов, и клоны могут оказаться непохожими друг на друга по достаточно большому числу признаков. Кстати, такое явление известно и для природных клонов - монозиготных близнецов. Были описаны две сестры - монозиготные близнецы, одна из которых была здорова, а у другой была гемофилия. Известно, что у женщин гемофилия бывает крайне редко, только в случае гомозиготное™. У гетерозигот примерно половина «здоровых» Х-хромосом инактивирована, но оставшейся половины достаточно для нормальной свертываемости крови. Упомянутые близнецы, по-виДимому, возникли в результате разделения эмбриона на стадии, когда Х-хромосомы уже были инакти-вированы и у одной из сестер нормальная хромосома оказалась инактивированной во всех клетках организма. Результатом стало развитие заболевания у гетерозиготы.

Могут быть и другие причины непохожести клонов. Все искусственно полученные клонированные эмбрионы развиваются не в таких условиях, как оригинал. Другими являются возраст суррогатной матери, её гормональный статус, питание и т. п. А эти факторы очень важны во время эмбриогенеза. Причинами различий клона и оригинала могут быть и вариации фенотипического проявления генов (экспрессивность и пенетрантность), различия в геноме митохондрий (клоны имеют не такие митохондрии, как оригинал), отличия в рисунке инактивации (импринтинг) некоторых генов в эмбриогенезе, неустранимые различия ядер соматических и половых клеток (например, неполная дедифференцировка ядра соматической клетки, помещенного в яйцеклетку).

ПРОБЛЕМА КЛОНИРОВАНИЯ ЧЕЛОВЕКА

Именно возможность искусственного клонирования человека вызвала бурные эмоции в обществе. Количество самых полярных высказываний (диапазон их от «к концу следующего столетия население планеты будет состоять из клонов» до «какой-то фантастический роман, интересный, но абсолютно нереалистичный») не поддается исчислению. Некоторые люди уже завещают сохранить их клетки в состоянии глубокого замораживания для того, чтобы, когда техника клонирования будет отработана, воскреснуть в виде клона, обеспечив тем самым себе бессмертие. Другие думают путем клонирования преодолеть бесплодие или вырастить себе «запасные части» - органы для трансплантации. Третьи хотят облагодетельствовать человечество, населив его клонами гениев. Насколько оправданы эти оценки и чаяния? Попробуем спокойно, «без гнева и пристрастья» ответить на некоторые вопросы, возникающие в связи с понятием «клонирование человека».

Вопрос первый: возможно ли клонирование человека? Ответ однозначен: да, конечно, технически это возможно.

Вопрос второй: зачем клонировать человека? Ответов несколько, разной степени реалистичности:

1. Достижение личного бессмертия. Эту перспективу можно серьезно не обсуждать, об абсурдности этих надежд было сказано выше.
2. Выращивание гениальных личностей. Главное сомнение - а будут ли они гениальными? Слишком сложный это признак, и, хотя генетическая составляющая в его формировании не вызывает сомнения, величина этой составляющей может варьировать, а влияние средовых факторов может быть велико и непредсказуемо. И - важный вопрос - будут ли они благодарны тем, кто создал их двойников, нарушив естественное право человека на собственную неповторимость? Ведь и у монозиготных близнецов иногда возникают проблемы, связанные именно с этим аспектом.
3. Научные исследования. Сомнительно, чтобы существовали такие научные проблемы, которые можно было бы разрешить исключительно только с помощью клонов человека (об этических аспектах этого - чуть позже).
4. Использование клонирования в медицинских целях. Это именно тот вопрос, который следует обсуждать серьезно.

Предполагается, что можно использовать клонирование для преодоления бесплодия - это так называемое репродуктивное клонирование. Бесплодие, действительно, является чрезвычайно важной проблемой, многие бездетные семьи согласны на самые дорогие процедуры, чтобы иметь возможность родить ребенка.

Но возникает вопрос - а что принципиально нового может дать клонирование по сравнению, например, с экстракорпоральным оплодотворением с использованием донорских половых клеток? Честный ответ будет - ничего. Клонированный ребенок не будет иметь генотипа, являющего комбинацией генотипов мужа и жены. Генетически такая девочка будет монозиготной сестрой своей матери, генов отца у нее не будет. Точно так же клонированный мальчик для своей матери будет генетически чужд. Другими словами, получить генетически полностью «своего» ребенка с помощью клонирования бездетная семья не сможет, так же как и при использовании донорских половых клеток («дети из пробирки», полученные с помощью собственных половых клеток мужа и жены, генетически не отличаются от «обычных» детей). А в таком случае - зачем такая сложная и, что особенно важно, очень рискованная процедура? А если вспомнить, какова эффективность клонирования, представить себе, сколько нужно получить яйцеклеток, чтобы родился один клон, который к тому же, возможно, будет больным, с укороченной продолжительностью жизни, сколько эмбрионов, уже начавших жить, погибнет, то перспектива репродуктивного клонирования человека становится устрашающей. В большинстве тех стран, где технически возможно осуществление клонирования человека, репродуктивное клонирование законодательно запрещено.

Терапевтическое клонирование предполагает получение эмбриона, выращивание его до 14-дневного возраста, а затем использование эмбриональных стволовых клеток в лечебных целях. Перспективы лечения с помощью стволовых клеток ошеломляющи - излечение многих нейродегене-ративных заболеваний (например болезней Альцгеймера, Паркинсона), восстановление утраченных органов, а при клонировании трансгенных клеток - лечение многих наследственных болезней. Но посмотрим правде в лицо: фактически это означает вырастить себе братика или сестричку, а потом - убить, чтобы использовать их клетки в качестве лекарства. И если убивается не новорожденный младенец, а двухнедельный эмбрион, дела это не меняет. И, хотя, ограниченное использование терапевтического клонирования в большинстве стран не запрещено, очевидно, что человечество вряд ли пойдет по этому пути. Поэтому ученые ищут другие пути для получения стволовых клеток.

Китайские ученые с целью получения эмбриональных стволовых клеток человека создали гибридные эмбрионы путем клонирования ядер клеток кожи человека в яйцеклетках кроликов. Было получено более 100 таких эмбрионов, которые в течение нескольких дней развивались в искусственных условиях, а затем из них были получены стволовые клетки. Неизбежно возникает вопрос, что получилось бы, если такой эмбрион имплантировали бы в матку суррогатной матери и дали ему возможность развиваться. Эксперименты с другими видами животных дают основания считать, что жизнеспособный плод вряд ли бы мог развиться. Ученые надеются, что такой способ получения стволовых клеток окажется этически более приемлемым, чем клонирование человеческих эмбрионов.

Но, к счастью, оказывается, что эмбриональные стволовые клетки можно получать гораздо проще, не прибегая к сомнительным с этической точки зрения манипуляциям. У каждого новорожденного в его собственной пуповинной крови содержится довольно много стволовых клеток. Если эти клетки выделить, а затем хранить в замороженном виде, их можно будет использовать, если возникнет такая необходимость. Создавать такие банки стволовых клеток можно уже сейчас. Правда, следует иметь в виду, что стволовые клетки еще могут преподнести сюрпризы, в том числе и неприятные. В частности, есть данные о том, что стволовые клетки могут легко приобретать свойства злокачественности. Скорее всего, это связано с тем, что в искусственных условиях они изъяты из-под жесткого контроля со стороны организма. А ведь контроль «социального поведения» клеток в организме не только жесткий, но весьма сложный и многоуровневый. Но, конечно, возможности использования стволовых клеток столь впечатляющи, что исследования в этой области и поиски доступного источника стволовых клеток будут продолжаться.

И наконец, последний вопрос: допустимо ли клонирование человека?
Конечно, клонирование человека, безусловно, недопустимо, пока не преодолены технические сложности и низкая эффективность клонирования, пока не гарантирована нормальная жизнеспособность клонов. Несмотря на то, что время от времени появляются сообщения о том, что где-то родились клонированные дети, до настоящего времени ни одного документированного, достоверного случая успешного клонирования человека нет. Сенсационное сообщение о клонировании человеческих эмбрионов с очень высокой эффективностью южнокорейским ученым Ву-Сук Хваном не подтвердилось, были получены доказательства фальсификации результатов. До того чтобы клонирование стало обычной безопасной процедурой, еще очень далеко. Смысл вопроса в другом - допустимо ли клонирование человека в принципе? Какие последствия могло бы иметь применение этого способа размножения?

Одним из вполне реальных последствий клонирования может стать нарушение соотношения полов в потомстве. Не секрет, что очень и очень многие семьи во многих странах хотели бы иметь скорее мальчика, чем девочку. Уже в настоящее время в Китае возможность пренатальной диагностики пола и меры по ограничению рождаемости привели к такому положению, что в некоторых районах среди детей наблюдается значительное преобладание мальчиков. Что будут делать эти мальчики, когда придет время заводить семью?

Другое негативное следствие широкого применения клонирования - снижение генетического разнообразия человека. Оно и так невелико - существенно меньше, чем, например, даже у таких малочисленных видов, как человекообразные обезьяны. Причина этого - резкое снижение численности вида, имевшее место не менее двух раз за последние 200 тыс. лет. Следствием является большое количество наследственных заболеваний и дефектов, вызываемых переходом мутантных аллелей в гомозиготное состояние. Дальнейшее снижение разнообразия может поставить под угрозу существование человека как вида. Правда, справедливости ради следует сказать, что столь широкого распространения клонирования вряд ли следует ожидать даже в отдаленном будущем.

И наконец, не следует забывать о тех последствиях, которые мы пока не в состоянии предусмотреть.

В заключение нужно сказать вот о чем. Стремительное развитие биологии и медицины поставило перед человеком множество новых вопросов, которые никогда раньше не возникали и не могли возникнуть - допустимость клонирования или эвтаназии; возможности реанимации поставили вопрос о границе жизни и смерти; угроза перенаселения Земли требует ограничения рождаемости. С подобными проблемами человечество никогда не сталкивалось и поэтому не выработало никаких этических установок по их поводу. Именно поэтому сейчас невозможно дать ясные и четкие ответы, что можно, а что нельзя. Нужно отдавать себе отчет и вот еще в чем: можно законодательно запретить те или иные работы, но природа человека такова, что, если что-нибудь (клонирование человека, например) технически возможно, оно рано или поздно будет сделано несмотря ни на какие запреты. Именно поэтому необходимо широкое обсуждение подобных вопросов, с тем чтобы вырабатывалось осознанное отношение к таким проблемам, по которым в настоящее время невозможно дать однозначного ответа.


"Биология для школьников" . - 2014 . - № 1 . - С. 18-29.