Комплексная оптическая когерентная томография. Оптическая когерентная томография глаза

5-08-2011, 10:31

Описание

Оптическая когерентная томография (ОКТ) - оптический метод исследования, позволяющий отображать структуру биологических тканей организма в поперечном срезе с высоким уровнем разрешения, обеспечивая получение прижизненной морфологической информации на микроскопическом уровне. Действие ОКТ основано на принципе низкокогерентной интерферометрии.

Метод позволяет оценить величину и глубину светового сигнала, отражённого от различных по оптическим свойствам тканей. Осевое разрешение порядка 10 мкм обеспечивает наиболее хорошее из всех существующих методов исследования и отображения тканевых микроструктур. Методом ОКТ определяют эхозадержку отражённой световой волны с измерением интенсивности и глубины сигнала. При фокусировании на ткани-мишени светового луча происходят его рассеивание и частичное отражение от внутренних микроструктур на различных глубинах исследуемых тканей (рис. 17-1).

Механизм аналогичен таковому при ультразвуковом А-сканировании, суть которого заключена в измерении времени, за которое импульс акустической волны проходит от источника ультразвука до цели и обратно к принимающему устройству. В ОКТ вместо звуковой волны применяют пучок когерентного света инфракрасного диапазона с длиной волны 820 нм.

Схему применяемого в офтальмологии оптического когерентного томографа можно представить следующим образом. В качестве источника излучения в устройстве используется суперлюминесцентный диод с длиной когерентности излучения 5-20 мкм. Интерферометр Майкельсона встроен в аппаратную часть прибора, в объектном плече расположен конфокальный микроскоп (фундус-камера или щелевая лампа), в опорном плече - блок временной модуляции.

Видимую картину и траекторию сканирования исследуемой области посредством видеокамеры выводят на монитор. Компьютер обрабатывает полученную информацию и сохраняет её в виде графических файлов в базе данных. Оптические когерентные томограммы представлены в виде логарифмической чёрно-белой шкалы. Для лучшего восприятия изображение трансформируют в псевдоцветное, где участкам с высокой степенью светоотражения соответствуют красный и белый цвет, оптически прозрачным - чёрный.

Современная ОКТ - бесконтактная неинвазивная технология, которую используют для исследования морфологии переднего и заднего отрезка глазного яблока in vivo. Она позволяет выявить, записать и количественно оценить состояние сетчатки и прилежащего СТ, зрительного нерва, а также измерить толщину и определить прозрачность роговицы, исследовать состояние радужки и УПК. Возможность многократного повторения исследований и сохранения полученных результатов в памяти компьютера даёт возможность проследить динамику патологического процесса.

Показания

ОКТ позволяет получить ценную информацию как о состоянии нормальных структур глаза, так и о проявлении патологических состояний, таких, как различные помутнения роговицы, в том числе после рефракционных операций, иридоцилиарные дистрофии, тракционный витреомакулярный синдром, макулярные разрывы и предразрывы, макулодистрофии, макулярные отёки, пигментный ретинит, глаукома и прочее.

Противопоказания

Методом ОКТ невозможно получить качественное изображение при сниженной прозрачности сред. Исследование затруднено у пациентов, которые не могут обеспечить неподвижную фиксацию взора на протяжении времени сканирования (2,0-2,5 с).

Подготовка

Процедура не требует дополнительной подготовки. Однако расширение зрачка позволит получить более качественное изображение структур заднего отрезка глаза.

Методика и последующий уход

Технически оптическую когерентную томографию осуществляют следующим образом. После ввода данных пациента (номер карты, фамилия, имя, дата рождения) приступают к исследованию. Пациент фиксирует взгляд на мигающем объекте в линзе фундус-камеры. Камеру приближают к глазу пациента до тех пор, пока изображение сетчатки не отобразится на мониторе. После этого следует зафиксировать камеру нажатием кнопки фиксатора и отрегулировать чёткость изображения. Если острота зрения низкая и пациент не видит мигающий объект, то следует использовать внешнюю подсветку, а пациент должен не мигая смотрен, прямо перед собой. Оптимальное расстояние между исследуемым глазом и линзой камеры 9 мм. Исследование проводят в режиме perform scans (выполнение сканирования) и контролируют с помощью панели управления, представленной в виде регуляторных кнопок и манипуляторов, разделённых на шесть функциональных групп.

Далее осуществляют выравнивание и очищение выполненных сканов от помех. После обработки данных производят измерение исследуемых тканей и анализ их оптической плотности. Полученные количественные измерения можно сравнивать со стандартными нормальными значениями или значениями, полученными во время предыдущих обследований и сохранёнными в памяти компьютера.

Интерпретация

Установление клинического диагноза должно быть основано прежде всего на качественном анализе полученных сканов. Следует обращать внимание на морфологию тканей (изменение внешнего контура, взаимоотношения различных слоев и отделов, взаимоотношения с соседними тканями), изменение светоотражения (повышение или понижение прозрачности, наличие патологических включений). Количественный анализ позволяет выявить утолщение или истончение как слоя клеток, так и всей структуры, её объём, получить карту исследуемой поверхности.

Томография роговицы. Важно точно локализовать имеющиеся структурные изменения и рассчитать их параметры: это даёт возможность более корректно выбрать тактику лечения и объективно оценить его эффективность. В некоторых случаях ОКТ роговицы считают единственным методом, позволяющим рассчитать её толщину (рис. 17-2). Большое преимущество для повреждённой роговицы - бесконтактность методики.

Томография радужки даёт возможность выделить передний пограничный слой, строму и пигментный эпителий. Отражающая способность этих слоев различается в зависимости от количества содержащегося в слоях пигмента: на светлых, слабопигментированных радужках самые большие отражённые сигналы идут от заднего пигментного эпителия, передний пограничный слой чётко не визуализирован. Ранние патологические изменения радужки, выявляемые с помощью ОКТ считают значимыми для постановки диагноза в доклинической стадии при синдроме пигментной дисперсии, псевдоэксфолиативном синдроме, эссенциальной мезодермальной дистрофии, синдроме Франк-Каменецкого.

Томография сетчатки. В норме на ОКТ выявляют правильный профиль макулы с углублением в центре (рис. 17-3).

Слои сетчатки дифференцируют согласно их светоотражающей способности, равномерные по толщине, без очаговых изменений. Высокой светоотражающей способностью обладает слой нервных волокон и пигментного эпителия, средняя степень светоотражения характерна для плексиформного и ядерного слоя сетчатки, практически прозрачен слой фоторецепторов. Наружный край сетчатки на ОКТ ограничен высокофоторефлектирующим ярко-красным слоем толщиной около 70 мкм, составляющим комплекс пигментного эпителия сетчатки (ПЭС) и хориокапилляров. Более тёмная полоса (на томограмме расположена непосредственно перед комплексом "ПЭС/хорио-капилляры") представлена фоторецепторами. Ярко-красная линия на внутренней поверхности сетчатки соответствует слою нервных волокон. СТ в норме оптически прозрачно и на томограмме имеет чёрный цвет. Резкий контраст между окрашиванием тканей позволил производить измерение толщины сетчатки. В области центральной ямки жёлтого пятна она составила в среднем около 162 мкм, у края фовеа - 235 мкм.

Идиопатические макулярные разрывы дефекты сетчатки
в области жёлтого пятна, возникающие без какой-то видимой причины у пациентов пожилого возраста. Использование ОКТ даёт возможность точно диагностировать заболевание на всех его этапах, определять тактику лечения и контролировать его эффективность. Так, для начального проявления идиопатического макулярного разрыва, называемого предразрывом, характерно наличие фовеолярной отслойки нейроэпителия вследствие витреофовеолярной тракции. При ламеллярном разрыве отмечают дефект внутренней поверхности сетчатки, при этом слой фоторецепторов сохранён. Сквозной разрыв (рис. 17-4) дефект сетчатки на всю глубину.

Вторым по влиянию на зрительные функции признаком, который можно выявить с помощью ОКТ, считают дегенеративные изменения сетчатки вокруг разрыва. И наконец, наличие или отсутствие витреомакулярных тракций считают важным прогностическим признаком. При анализе томограммы следует оценивать толщину сетчатки в макуле, минимальный и максимальный диаметр разрыва (на уровне ПЭС), толщину отёка по краю разрыва, диаметр интраретинальных кист. Важно обращать внимание на сохранность слоя ПЭС, степень дегенерации сетчатки вокруг разрыва (определяют по уплотнению тканей и появлению их красного окрашивания на томограмме).

Возрастная макулодистрофия (ВМД) группа хронических дегенеративных нарушений с неизвестным этиопатогенезом, которыми страдают пожилые пациенты. ОКТ может быть использована для диагностики изменений структур заднего полюса глаза на различных этапах развития ВМД. Измеряя толщину сетчатки, можно объективно проследить эффективность проводимой терапии. Далее мы приводим клинические случаи, которые позволяют более полно представить изменения сетчатки, происходящие на различных этапах развития ВМД (рис. 17-5, 17-6).


Диабетический макулярный отёк - одна из наиболее тяжёлых, прогностически неблагоприятных и трудно поддающихся лечению форм ДР. ОКТ позволяет оценить толщину сетчатки, наличие интраретинальных изменений, степень дегенерации тканей, а также состояние прилежащего витреомакулярного пространства (рис. 17-7).

Зрительный нерв. Высокая разрешающая способность ОКТ позволяет хорошо различить слой нервных волокон и измерить его толщину. Толщина слоя нервных волокон хорошо коррелирует с функциональными показателями, и прежде всего с полями зрения. Слой нервных волокон имеет высокое обратное рассеивание и, таким образом, контрастирует с промежуточными слоями сетчатки, так как аксоны нервных волокон ориентированы перпендикулярно пучку ОКТ наконечника. Томографию ДЗН можно проводить радиальными и кольцевыми сканами. Радиальные сканы через ДЗН позволяют получить изображение диска в поперечном сечении и оценить экскавацию, толщину слоя нервных волокон в перипапиллярной зоне, а также угол наклона нервных волокон относительно поверхности ДЗН и сетчатки (рис. 17-8).

Трёхмерная информация параметров диска может быть получена на основе серии томограмм, выполненных в различных меридианах, и позволяет измерить толщину слоя нервных волокон в различных участках вокруг ДЗН и оценить их структуру. "Развёрнутая" томограмма представлена в виде плоского линейного снимка. Толщина слоя нервных волокон и сетчатки может быть автоматически обработана компьютером и представлена на экране как усреднённая величина всего скана, квадранта (верхнего, нижнего, височного, носового), часа или индивидуально для каждого скана, содержащего снимок. Эти количественные намерения можно сравнивать со стандартными нормальными значениями или значениями, полученными во время предыдущих обследований. Это позволяет выявлять как локальные дефекты, так и диффузную атрофию, что может быть использовано для объективной диагностики и мониторинга патологических процессов при ней родегенеративных заболеваниях.

Застойный диск - офтальмологический симптом повышения внутричерепного давления. ОКТ считают объективным методом, позволяющим определить, измерить и проследить в динамике степень выстояния ДЗН. Оценивая уровень светоотражения тканей, можно оценить как гидратацию тканей, так и степень их дегенерации (рис. 17-9).

Ямка зрительного нерва - врождённая аномалия развития. Наиболее частым осложнением ямки зрительного нерва считают расслоение (шизис) сетчатки в макуле. ОКТ чётко иллюстрирует дефекты ДЗН и расслоение сетчатки, изменения, происходящие в фовеа (рис. 17-10).

Пигментный ретинит, или тапеторетинальная абиотрофия , - наследственное прогрессирующее заболевание органа зрения с первичным генетически детерминированным поражением фоторецепторного слоя и ПЭС. Оценить состояние хориоретинального комплекса и тяжесть развития заболевания можно с помощью ОКТ. На томограммах оценивают толщину слоя фоторецепторов, нервных волокон и нейроглии сетчатки, прозрачность слоев сетчатки относительно стандартной цветовой шкалы прибора, состояние ПЭС и слоя хориокапилляров. Уже в латентной стадии пигментного ретинита при отсутствии клинических проявлений и офтальмоскопических признаков заболевания обнаруживают характерные изменения в виде уменьшения толщины слоя фоторецепторов, снижения его прозрачности, сегментов и повышенным метаболизмом пигментного эпителия. ОКТ позволяет осуществлять мониторинг патологического процесса и может быть использована в диагностике пигментного ретинита, включая беспигментную форму, в том числе и у детей, когда из-за маленького возраста ребёнка и его неадекватного поведения невозможно проведение функциональных методов исследования.

Операционные характеристики

Источник светового сигнала - суперлюминесцентный диод с длиной волны 820 нм для сетчатки и 1310 нм для переднего отрезка. Тип сигнала - оптическое рассеивание от ткани. Поле изображения: 30 мм по горизонтали и 22 мм по вертикали для заднего отрезка, 10-16 мм - для переднего. Разрешение: продольное - 10 мкм, поперечное - 20 мкм. Скорость сканирования - 500 аксиальных срезов в секунду.

Факторы, влияющие на результат

Если пациенту накануне проводили офтальмоскопию с использованием панфундусскопа, линзы Гольдмана либо гониоскопию, проведение ОКТ возможно только после вымывания контактной среды из конъюнктивальной полости.

Осложнения

Используемое излучение инфракрасного диапазона незначительной мощности не оказывает повреждающего воздействия на исследуемые ткани, не имеет ограничений по соматическому состоянию пациента и исключает нанесение травмы.

Альтернативные методы

Часть информации, которую даёт ОКТ, можно получить с помощью Гейдельбергского ретинального томографа, ФАГ, ультразвуковой биомикроскопии, ИОЛ-Мастера и т.п.

Статья из книги: .

Оптическая когерентная томография относительно новый метод исследования глазных структур.

Он требует высокотехнологичного оборудования, и позволяет получить исчерпывающую информацию о состоянии сетчатки и передних структур глаза без травмирующего вмешательства. Инфракрасный луч света не причиняет повреждений, не приносит неудобств ни во время проведения диагностики, после нее.

Сама идея проведения диагностики с помощью инфракрасного излучения была предложена только в 1995 году офтальмологом из США Кармен Пулиафито. Первый же аппарат для проведения оптической когерентной томографии появился спустя 2 года. Сегодня этот сравнительно молодой способ исследования глаза получил широкое применение.

Устройство томографа для ОКТ

Это высокотехнологичный аппарат, который состоит из устройства для продуцирования низкокогерентных лучей ультрафиолетового спектра, отражательных зеркал, интерферометра Майкельсона и компьютерного оборудования.

Лучи генерируемые устройством разделяются на два пучка, один проходит через ткани глаза, а другой через специальные зеркала. Фиксируется и анализируется скорость прохождения световых лучей (при УЗИ анализируют радиоволны), но не прямые (их скорость слишком высока), а отраженные.


Структуры глаза (кожа, слизистые, хрусталик, стекловидное тело, вены и т. д.) по-разному отражают световые лучи, эта разница и фиксируется интерферометром. Оборудованием проводится преобразование числовых измерений в изображение, которое выводится на монитор. Лучи с высоким уровнем отражения рисуются в «теплом» спектре (красные оттенки), чем ниже уровень отражения, тем холоднее цвет (вплоть до темно-синего и черного). Так, стекловидное тело на изображении будет черным (оно свет почти не отражает), а нервные волокна (как и эпителий) имеют высокую степень отражения и окажутся красного цвета.

Отсюда следует, что исследование будет затруднено при помутнении оптических сред, отеке роговицы, при кровоизлияниях.

Сканирование проводится в двух плоскостях вдоль, а также поперек, делается множество плоскостных срезов. Это позволяет смоделировать точную трехмерную картинку глаза. Уровень разрешения от 1 до 15 микрон. Для исследования дна сетчатки применяют луч с длиной волны 830 нм., для изучения переднего отдела – 1310 нм.

Уровень технического оснащения сегодня позволяет исследовать передний отдел и задний полюс глаза. Для получения качественных результатов диагностики, необходимо прозрачность оптических сред и слезная пленка в норме (нередко применяют искусственную слезу), зрачок должен быть расширен (используют специальные препараты-мидриатики).

Полученный и расшифрованный результат, будет представлен в форме карт, рисунков и протоколов.

Многие офтальмологи называют ОКТ не инвазивной биопсией, что, по сути, является правдой.

Когда назначают когерентную томографию

Это обследование назначаю при целом ряде заболеваний переднего отдела глаза. Среди них окажутся:

  • различные формы глаукомы (исследуют и оценивают работу систем дренажа),
  • язвы роговицы,
  • сложные кератиты.

Когерентная томография назначается для изучения передних отделов глаза перед и после проведения:

  • лазерной коррекции зрения, кератопластики,
  • имплантации факичной интраокулярной оптической линзы (ИОЛ), или интрастромальных роговичных колец.

Исследуют задний отдел глаза при выявлении:

  • возрастных, дегенеративных изменений сетчатки;
  • макулярных разрывов или макулярных кистоидных отеков.
  • при подозрении на отслойку сетчатки,
  • в случае наличия эпиретинальной мембраны (целлофановой макулы),
  • при аномалиях зрительного диска, разрывах, атрофиях,
  • при тромбозах центральной вены сетчатки,
  • в случае подозрения на полиферативную витреоретинопатию или при ее выявлении.

Нередко когерентную томографию назначают больным с диабетической ретинопатией (им проводят обследование без мидриатиков), а также в целом ряде других офтальмологических заболеваний, при которых требуется биопсия.

Процедура обследования на когерентном томографе

Сама диагностика абсолютно безболезненна, по времени она занимает 2–3 минуты, проводится в комфортных для пациента условиях. Пациент размещается перед линзой фундус-камеры (голова фиксируется) и смотрит на мигающую точку. Если зрение снижено и точка не видна, то просто нужно сидеть неподвижно и смотреть в одну точку перед собой.

Предварительно оператором будут введены данные о пациенте в компьютер. Затем в течение 1–2 минут проводится сканирование. От больного требуется не двигаться и не моргать.

После этого полученные данные обрабатываются. Полученные результаты сравниваются с имеющимися в базе данными здоровых людей, цифровые данные преобразовываются в карты, рисунки удобные для восприятия. Все результаты будут представлены испытуемому в виде карт, таблиц и протоколов.

Результаты когерентной томографии

Расшифровка результатов проводится квалифицированным специалистом и будет содержать следующие аспекты:

  • морфологические особенности тканей: внешние контуры, взаимоотношение и соотношение различных слоев, структур и отделов, соединительные ткани;
  • показатели светоотражения: их изменения, повышение или понижение, патологии;
  • количественный анализ: клеточное, тканевое истончение или утолщения, объем структур и тканей (здесь составляется карта диагностируемой поверхности).

При исследовании роговицы обязательно точно указывают локализацию повреждений, их размер и качество, толщину самой роговицы. ОКТ позволяет очень точно определить нужные параметры. Здесь большое значение имеет без контактность методики.

Диагностика радужки дает возможность определить размеры пограничного слоя, стромы и пигментного эпителия. Хотя сигналы от светлой и боле пигментированной радужки разнятся они, в любом случае, дают возможность выявить на ранних (часто доклинических) стадиях такие заболевания, как мезодермальная дистрофия, синдром Франк-Каменецкого, другие.

Когерентная томография сетчатки даст в норме профиль макулы с углублением в центре. Слои должны быть равномерными по толщине, без очагов деструкции. Нервные волокна и пигментный эпителий будут иметь теплые (красно-желтые) оттенки, средними отражательными способностями обладают плексиформный и ядерный слои, они окажутся синими и зелеными, черным будет слой фоторецепторов (он обладает низкими отражательными способностями), наружный слой ярко-красного цвета. Измерения размеров должно быть таким: в области ямки желтого пятна чуть больше 162 мкм, у его края – 235 мкм.

Исследование зрительного нерва дает возможность оценить толщину слоя нервных волокон (около 2 мм), их угол наклона относительно диска зрительного нерва и сетчатки.

Выявление патологий на когерентном томографе

Во время когерентной томографии выявляют множество патологий как передних отделов глаза, так и сетчатки. Особенно ценными будут исследования сетчатки и макулы, так как проведенное исследование позволяет определить патологию так же точно, как и при биопсии. Но ОКТ не является инвазивной методикой и не нарушает целостности тканей. Так, среди наиболее часто выявляемых заболеваний будут:

  • Дефекты сетчатки, идиопатические разрывы . Они часто встречаются у пожилых людей, возникают без видимых на то причин. Исследование устанавливает очаг, размеры на всех стадиях заболевания, а также дегенеративные процессы вокруг очага, наличие интераритинальных кист.
  • Возрастные макулодистрофии. ОКТ позволяет выявить эти заболевания (характерны для пожилых), а также оценить эффективность проводимой терапии.
  • Диабетический отек отнесен к самым тяжелым формам диабетической ретинопатии, он сложно поддается лечению. Когерентная томография позволяет определить зону поражения, выраженность и дегенерацию тканей, степень поражения витреомакулярного пространства.
  • Застойный диск . По степени светоотражения определяют гидратацию и дегенерацию тканей. Наличие застойного диска будет свидетельствовать о высоком внутричерепном давлении.
  • Врожденные дефекты ямки зрительного нерва . Среди них наиболее часто встречается расслоение.
  • Пигментный ретинит . Определение этого прогрессирующего наследственного заболевания нередко представляет сложность. Метод очень информативен для малышей, когда другие методики бессильны перед беспокойством грудничка.

Для полноценной диагностики большинства офтальмологических заболеваний недостаточно простых методов. Оптическая когерентная томография позволяет визуализировать структуру органов зрения и выявить мельчайшие патологии.

Преимущества ОКТ

Оптическая когерентная томография (ОКТ) – инновационный метод офтальмологической диагностики, который заключается в визуализации структур глаза в высоком разрешении. Можно оценить состояние глазного дна и элементов передней камеры глаза на микроскопическом уровне. Оптическая томография позволяет изучить ткани без их изъятия, поэтому считается щадящим аналогом биопсии.

ОКТ можно сравнить с УЗИ и компьютерной томографией. Разрешающие способности когерентной томографии намного выше, чем способности других высокоточных диагностических приборов. ОКТ позволяет определить мельчайшие повреждения до 4 микрон.

Оптическая томография является предпочтительным методом диагностики во многих случаях, поскольку она неинвазивна и не использует контрастные вещества. Метод не требует радиационного облучения, а изображения получаются более информативными и четкими.

Специфика диагностики методом ОКТ

Разные ткани организма по-разному отражают световые волны. Во время томографии замеряют время задержки и интенсивность отраженного света при его прохождении через ткани глазного яблока. Метод бесконтактен, безопасен и высоко информативен.

Поскольку световая волна двигается с очень высокой скоростью, прямое измерение показателей не представляется возможным. Для расшифровки результатов используют интерферометр Майкельсона: луч разделяют на два пучка, один из которых направляют на обследуемую область, а второй – к специальному зеркалу. Для обследования сетчатки используют низкокогерентный луч инфракрасного света длиной волны в 830 нм, а для обследования переднего отрезка глаза – волну длиной 1310 нм.

Читайте также: – рак, возникающий из незрелой сетчатки.

При отражении оба пучка попадают в фотодетектор, образуется интерференционная картина. Компьютер анализирует эту картину и преобразует информацию в псевдоизображение. На псевдоизображении участки с высокой степенью отражения выглядят более «теплыми», а те места, где отражение ниже, могут быть почти черными. В норме «теплыми» видятся нервные волокна и пигментный эпителий. Средняя степень отражения у плексиформного и ядерного слоев сетчатки, а стекловидное тело отображается черным, поскольку оно оптически прозрачно.

Возможности ОКТ:

  • оценка морфологических изменений в сетчатке и слоях нервных волокон;
  • определение толщины структур глаза;
  • измерение параметров диска зрительного нерва;
  • оценка состояния структур передней камеры глаза;
  • определение пространственного взаимоотношения элементов глазного яблока в переднем отрезке.

Чтобы получить трехмерное изображение, глазные яблоки сканируют продольно и поперечно. Оптическая томография может быть затруднена при отеке роговицы, помутнении и кровоизлиянии в оптических средах.

Что можно исследовать в процессе оптической томографии

Оптическая томография дает возможность изучить все части глаза, но наиболее точно можно оценить состояние сетчатки, роговицы, зрительного нерва, а также элементов передней камеры. Нередко проводят отдельно томографию сетчатки, чтобы выявить структурные нарушения. Более точных методов исследования макулярной зоны на данный момент не существует.

При каких симптомах назначают ОКТ:

  • внезапное снижение остроты зрения;
  • слепота;
  • затуманивание зрения;
  • мушки перед глазами;
  • повышение внутриглазного давления;
  • острая боль;
  • экзофтальм (выпучивание глазного яблока).

В процессе оптической когерентной томографии можно оценить угол передней камеры и степень функционирования дренажной системы глаза при глаукоме. Подобные исследования проводят до и после лазерной коррекции зрения, кератопластики, установки интрастромальных колец и факичных интраокулярных линз.

Оптическую томографию проводят при подозрении на такие заболевания:

  • (врожденные и приобретенные);
  • опухоли органов зрения;
  • повышенное внутриглазное давление;
  • пролиферативная витреоретинопатия;
  • атрофия, отечность и другие аномалии диска зрительного нерва;
  • эпиретинальная мембрана;
  • тромбоз центральной вены сетчатки и другие сосудистые заболевания;
  • отслойка сетчатки;
  • макулярные разрывы;
  • кистозный макулярный отек;
  • глубокий кератит;
  • язвы роговицы;
  • прогрессирующая близорукость.

Когерентная томография абсолютно безопасна. ОКТ позволяет выявить мелкие дефекты в структуре сетчатки и вовремя начать лечение.

В целях профилактики ОКТ проводят при:

  • сахарном диабете;
  • хирургическом вмешательстве;
  • гипертонической болезни;
  • тяжелых сосудистых патологиях.

Противопоказания к оптической когерентной томографии

Наличие кардиостимулятора и других устройств не является противопоказанием. Процедуру не проводят при состояниях, когда человек не может фиксировать взгляд, а также при психических отклонениях и спутанности сознания.

Помехой может стать и контактная среда в органе зрения. Под контактной средой подразумевается та, которую используют при других офтальмологических исследованиях. Как правило, несколько диагностических процедур в один день не проводят.

Получить качественные изображения можно только при наличии прозрачных оптических сред и нормальной слезной пленке. Провести ОКТ пациентам с высокой степенью близорукости и помутнениями оптических средств бывает затруднительно.

Как проводится оптическая когерентная томография

Оптическую когерентную томографию проводят в специальных медицинских учреждениях. Даже в больших городах не всегда можно найти офтальмологический кабинет с ОКТ-сканером. Сканирование сетчатки одного глаза обойдется примерно в 800 рублей.

Никакая специальная подготовка к томографии не требуется, исследование можно провести в любое время. Для этой процедуры нужен ОКТ-томограф – оптический сканер, который направляет в глаз пучки инфракрасного света. Пациента садят и просят зафиксировать взгляд на метке. Если нет возможности сделать это обследуемым глазом, взгляд фиксируют вторым, который лучше видит. Для полноценного сканирования достаточно двух минут в неподвижном положении.

В процессе делают несколько сканирований, а после оператор выбирает самые качественные и информативные снимки. Результатом исследования становятся протоколы, карты и таблицы, по которым врач может определить наличие изменений в зрительной системе. В памяти томографа есть нормативная база, которая содержит информацию о том, у скольких здоровых людей имеются аналогичные показатели. Чем меньшим окажется совпадение, тем больше вероятность наличия патологии у конкретного пациента.

Морфологические изменения глазного дна, различимые на снимках ОКТ:

  • высокая степень близорукости;
  • доброкачественные образования;
  • стафилома склеры;
  • диффузный и фокальный отек;
  • отек при субретинальной неоваскулярной мембране;
  • ретинальные складки;
  • витреоретинальная тракция;
  • ламеллярный и макулярный разрыв;
  • сквозной макулярный разрыв;
  • макулярный псевдоразрыв;
  • отслойка пигментного эпителия;
  • серозная отслойка нейроэпителия;
  • друзы;
  • разрывы пигментного эпителия;
  • диабетический макулярный отек;
  • макулярный кистовидный отек;
  • миопический ретиношизис.

Как видно, диагностические возможности ОКТ крайне разнообразны. Результаты отображаются на мониторе в виде послойного изображения. Аппарат самостоятельно преобразует сигналы, по которым можно оценить функциональность сетчатки. Поставить диагноз по результатам ОКТ удается в течение получаса.

Расшифровка снимков ОКТ

Чтобы правильно трактовать результаты оптической когерентной томографии, офтальмолог должен располагать глубокими знаниями по гистологии сетчатки и хориоидеи. Даже опытные специалисты не всегда могут сопоставить томографические и гистологические структуры, поэтому желательно, чтобы изображения ОКТ изучили несколько врачей.

Скопление жидкости

Оптическая томография дает возможность выявить и оценить скопление жидкости в глазном яблоке, а также определить его характер. Интраретинальное скопление жидкости может указывать на ретинальный отек. Он бывает диффузным и кистовидным. Интраретинальные скопления жидкости называют кистами, микрокистами и псевдокистами.

Субретинальное скопление свидетельствует об серозной отслойке нейроэпителия. На снимках видно элевацию нейроэпителия, а угол отслоения от пигментного эпителия составляет меньше 30°. Серозная отслойка, в свою очередь, указывает на ЦСХ или хориоидальную неоваскуляризацию. В редких случаях отслойка является признаком хориоидита, хориоидальных образований, ангиоидных полос.

Наличие субпигментного скопления жидкости говорит об отслойке пигментного эпителия. На снимках видно элевацию эпителия над мембраной Бруха.

Новообразования в глазу

На оптической томографии можно увидеть эпиретинальные мембраны (складки на сетчатке), а также оценить их плотность и толщину. При близорукости и хориоидальной неоваскуляризации мембраны представляются веретенообразными утолщениями. Нередко они сочетаются со скоплением жидкости.

Скрытые неоваскулярные мембраны на снимках выглядя как неравномерные утолщения пигментного эпителия. Неоваскулярные мембраны диагностируют при возрастной макулярной дегенерации, хронической ЦСХ, осложненной близорукости, увеите, иридоциклите, хориоидите, остеоме, невусе, псевдовителлиформной дегенерации.

Метод ОКТ позволяет определить наличие интраретинальных образований (ватообразные фокусы, геморрагии, твердый экссудат). Наличие ватообразных фокусов на сетчатке связано с ишемическими повреждениями нервов при диабетической или гипертонической ретинопатии, токсикозе, анемии, лейкемии, болезни Ходжкина.

Твердые экссудаты могут быть звездчатыми или изолированными. Обычно они локализуются на границе отека сетчатки. Такие образования обнаруживаются при диабетической, радиационной и гипертонической ретинопатии, а также при болезни Коатса и влажной макулярной дегенерации.

Глубокие образования отмечаются при макулярной дегенерации. Возникают фиброзные рубцы, которые деформируют сетчатку и разрушают нейроэпителий. На ОКТ такие рубцы дают эффект тени.

Патологические структуры с высокой рефлективностью на ОКТ:

  • невус;
  • гипертрофия пигментного эпителия;
  • рубцы;
  • геморрагии;
  • твердый экссудат;
  • ватообразные фокусы;
  • неоваскулярные мембраны;
  • воспалительные инфильтраты;

Патологические структуры с низкой рефлективностью:

  • кисты;
  • отек;
  • отслойка нейроэпителия и пигментного эпителия;
  • затенение;
  • гипопигментация.

Эффект тени

Ткани с высокой оптической плотностью могут затенять другие структуры. По эффекту тени на снимках ОКТ удается определить расположение и структуру патологических образований в глазу.

Эффект тени дают:

  • плотные преретинальные кровоизлияния;
  • ватообразные фокусы;
  • геморрагии;
  • твердые экссудаты;
  • меланома;
  • гиперплазия, гипертрофия пигментного эпителия;
  • пигментные образования;
  • неоваскулярные мембраны;
  • рубцы.

Характеристики сетчатки на ОКТ

Отечность является самой частой причиной утолщения сетчатки. Одним из преимуществ оптической томографии является возможность оценить и контролировать динамику разных видов отека сетчатки. Снижение толщины отмечается при возрастной макулярной дегенерации с образованием зон атрофии.

ОКТ позволяет оценить толщину определенного слоя сетчатки. Толщина отдельных слоев может меняться при глаукоме и ряде других офтальмологических патологий. Параметр объема сетчатки очень важен при выявлении отека и серозной отслойки, а также для определения динамики лечения.

Путем оптической томографии можно выявить:

  1. Возрастная макулярная дистрофия. Одна из основных причин ухудшения зрения у людей старше 60 лет. Хотя в диагностике дистрофии используют разные методы, оптическая когерентная томография остается ведущим. ОКТ позволяет определить толщину сосудистой оболочки при макулярной дистрофии, с ее помощью можно провести дифференциальную диагностику с центральной серозной хориоретинопатией.
  2. Центральная серозная хориоретинопатия. Заболевание характеризуется отслойкой нейросенсорного слоя от пигментного эпителия. В большинстве случаев хориоретинопатия самопроизвольно исчезает в течение 3-6 месяцев, хотя у некоторых жидкость накапливается, что провоцирует стойкое ухудшение зрения. Хроническая ЦСХ требует специального лечения. Как правило, это интравитреальные инъекции и лазерная коагуляция.
  3. Диабетическая ретинопатия. Патогенез заболевания обусловлен повреждением сосудов. Диагностика позволяет выявить отек сетчатки и проверить состояние стекловидного тела (в том числе выявить заднюю отслойку).
  4. Макулярный разрыв, эпиретинальный фиброз. С помощью ОКТ можно определить степень повреждения сетчатки, спланировать тактику хирургического лечения и оценить результаты.
  5. Глаукома. При повышенном внутриглазном давлении томография является дополнительным методом обследования. Метод очень полезен при нормотензивной глаукоме, когда повреждение зрительного нерва отмечается при нормальных показателях внутриглазного давления. В ходе ОКТ можно подтвердить болезнь и определить ее стадию.

Оптическая когерентная томография – безопасный и наиболее информативный метод обследования зрительной системы. ОКТ разрешается проводить даже тем пациентам, у которых имеются противопоказания к другим высокоточным методам диагностики.

2, 3
1 ФГАУ НМИЦ «МНТК «Микрохирургия глаза» им. акад. С. Н. Федорова» Минздрава России, Москва
2 ФКУ «ЦВКГ им. П.В. Мандрыка» Минобороны России, Москва, Россия
3 ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России, Москва, Россия

Оптическая когерентная томография (ОКТ) впервые была применена для визуализации глазного яблока более 20 лет назад и до сих пор остается незаменимым методом диагностики в офтальмологии. С помощью ОКТ стало возможно неинвазивно получать оптические срезы тканей с разрешением выше, чем у любого другого метода визуализации. Динамическое развитие метода привело к повышению его чувствительности, разрешающей способности, скорости сканирования. В настоящее время ОКТ активно применяется для диагностики, мониторинга и скринига заболеваний глазного яблока, а также для выполнения научных исследований. Совмещение современных технологий ОКТ и фотоакустических, спектроскопических, поляризационных, допплеро- и ангиографических, эластографических методов дало возможность оценивать не только морфологию тканей, но и их функциональное (физиологическое) и метаболическое состояние. Появились операционные микроскопы с функцией интраоперационного выполнения ОКТ. Представленные устройства могут быть использованы для визуализации как переднего, так и заднего отрезка глаза. В данном обзоре рассматривается развитие метода ОКТ, представлены данные о современных ОКТ-приборах в зависимости от их технологических характеристик и возможностей. Описаны методы функциональной ОКТ.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. № 4. С. 204–211.

Для цитирования: Захарова М.А., Куроедов А.В. Оптическая когерентная томография: технология, ставшая реальностью // РМЖ. Клиническая офтальмология. 2015. №4. С. 204-211

Optic coherent tomography - technology which became a reality

Zaharova M.A., Kuroedov A.V.

Mandryka Medicine and Clinical Center
The Russian National Research Medical University named after N.I. Pirogov, Moscow

Optical Coherence Tomography (OCT) was first applied for imaging of the eye more than two decades ago and still remains an irreplaceable method of diagnosis in ophthalmology. By OCT one can noninvasively obtain images of tissue with a resolution higher than by any other imaging method. Currently, the OCT is actively used for diagnosing, monitoring and screening of eye diseases as well as for scientific research. The combination of modern technology and optical coherence tomography with photoacoustic, spectroscopic, polarization, doppler and angiographic, elastographic methods made it possible to evaluate not only the morphology of the tissue, but also their physiological and metabolic functions. Recently microscopes with intraoperative function of the optical coherence tomography have appeared. These devices can be used for imaging of an anterior and posterior segment of the eye. In this review development of the method of optical coherence tomography is discussed, information on the current OCT devices depending on their technical characteristics and capabilities is provided.

Key words: оptical coherence tomography (OCT), functional optical coherence tomography, intraoperative optical coherence tomography.

For citation: Zaharova M.A., Kuroedov A.V. Optic coherent tomography - technology which became a reality. // RMJ. Clinical ophthalomology. 2015. № 4. P. 204–211.

Статья посвящена применению оптической когерентной томографии в офтальмологии

Оптическая когерентная томография (ОКТ) – это метод диагностики, который позволяет с высокой разрешающей способностью получать томографические срезы внутренних биологических систем. Название метода впервые приводится в работе коллектива из Массачусетского технологического университета, опубликованной в Science в 1991 г. Авторами были представлены томографические изображения, демонстрирующие in vitro перипапиллярную зону сетчатки и коронарную артерию . Первые прижизненные исследования сетчатки и переднего отрезка глаза с помощью ОКТ были опубликованы в 1993 и 1994 гг. соответственно . В следующем году вышел ряд работ, посвященных применению метода для диагностики и мониторинга заболеваний макулярной области (в т. ч. отека макулы при сахарном диабете, макулярных отверстий, серозной хориоретинопатии) и глаукомы . В 1994 г. разработанная технология ОКТ была передана зарубежному подразделению фирмы Carl Zeiss Inc. (Hamphrey Instruments, Dublin, США), и уже в 1996 г. была создана первая серийная система ОКТ, предназначенная для офтальмологической практики.
Принцип метода ОКТ заключается в том, что световая волна направляется в ткани, где распространяется и отражается или рассеивается от внутренних слоев, которые имеют различные свойства. Получаемые томографические образы – это, по сути, зависимость интенсивности рассеянного или отраженного от структур внутри тканей сигнала от расстояния до них. Процесс построения изображений можно рассматривать следующим образом: на ткань направляется сигнал от источника, и последовательно измеряется интенсивность возвращающегося сигнала через определенные промежутки времени. Так как скорость распространения сигнала известна, то по этому показателю и времени его прохождения определяется расстояние. Таким образом, получается одномерная томограмма (А-скан). Если последовательно смещаться по одной из оси (вертикальной, горизонтальной, косой) и повторять предыдущие измерения, то можно получить двухмерную томограмму. Если последовательно смещаться еще по одной оси, то можно получить набор таких срезов, или объемную томограмму . В ОКТ-системах применяется интерферометрия слабой когерентности. Интерферометрические методы позволяют значительно повысить чувствительность, т. к. с их помощью измеряется амплитуда отраженного сигнала, а не его интенсивность. Основными количественными характеристиками ОКТ-приборов являются осевое (глубинное, аксиальное, вдоль А-сканов) и поперечное (между А-сканами) разрешение, а также скорость сканирования (число А-сканов за 1 с).
В первых ОКТ-приборах использовался последовательный (временной) метод построения изображения (time-domain optical coherence tomography, TD-OC) (табл. 1). В основе этого метода лежит принцип работы интерферометра, предложенный А.А. Михельсоном (1852–1931 гг.). Луч света низкой когерентности от суперлюминесцентного светодиода разделяется на 2 пучка, один из которых отражается исследуемым объектом (глазом), в то время как другой проходит по референтному (сравнительному) пути внутри прибора и отражается специальным зеркалом, положение которого регулируется исследователем. При равенстве длины луча, отраженного от исследуемой ткани, и луча от зеркала возникает явление интерференции, регистрируемое светодиодом. Каждая точка измерения соответствует одному А-скану. Получаемые одиночные А-сканы суммируются, в результате чего формируется двухмерное изображение. Осевое разрешение коммерческих приборов первого поколения (TD-OCT) составляет 8–10 мкм при скорости сканирования 400 А-сканов/с. К сожалению, наличие подвижного зеркала увеличивает время исследования и снижает разрешающую способность прибора. Кроме этого, движения глаз, неизбежно возникающие при данной длительности сканирования, или плохая фиксация во время исследования приводят к формированию артефактов, которые требуют цифровой обработки и могут скрывать важные патологические особенности в тканях.
В 2001 г. была представлена новая технология – ОКТ сверхвысокого разрешения (Ultrahigh-resolution OCT, UHR-OCT), с помощью которой стало возможно получать изображения роговицы и сетчатки с осевым разрешением 2–3 мкм . В качестве источника света использовался фемтосекундный титан-сапфировый лазер (Ti:Al2O3 laser). По сравнению со стандартным разрешением, составляющим 8–10 мкм, ОКТ высокого разрешения стала давать более качественную визуализацию слоев сетчатки in vivo. Новая технология позволяла дифференцировать границы между внутренними и наружными слоями фоторецепторов, а также наружную пограничную мембрану . Несмотря на улучшение разрешающей способности, применение UHR-OCT требовало дорогостоящего и специализированного лазерного оснащения, что не позволяло использовать его в широкой клинической практике .
С внедрением спектральных интерферометров, использующих преобразование Фурье (Spectral domain, SD; Fouirier domain, FD), технологический процесс приобрел ряд преимуществ по сравнению с использованием традиционных временных ОКТ (табл. 1). Хотя методика была известна еще с 1995 г., она не применялась для получения изображений сетчатки почти до начала 2000-х гг. Это связано с появлением в 2003 г. высокоскоростных камер (charge-coupled device, ССD) . Источником света в SD-OCT является широкополосный суперлюминесцентный диод, позволяющий получить низкокогерентный луч, содержащий несколько длин волн. Как и в традиционной, в спектральной ОКТ луч света разделяется на 2 пучка, один из которых отражается от исследуемого объекта (глаза), а второй – от фиксированного зеркала. На выходе интерферометра свет пространственно разлагается по спектру, и весь спектр регистрируется высокоскоростной CCD-камерой. Затем с помощью математического преобразования Фурье происходят обработка спектра интерференции и формирование линейного А-скана. В отличие от традиционной ОКТ, где линейный А-скан получается за счет последовательного измерения отражающих свойств каждой отдельной точки, в спектральной ОКТ линейный А-скан формируется за счет одномоментного измерения лучей, отраженных от каждой отдельной точки . Осевое разрешение современных спектральных ОКТ-приборов достигает 3–7 мкм, а скорость сканирования – более 40 тыс. А-сканов/с. Безусловно, основным преимуществом SD-OCT является его высокая скорость сканирования. Во-первых, она позволяет значительно улучшить качество получаемых изображений путем уменьшения артефактов, возникающих при движениях глаз во время исследования. К слову, стандартный линейный профиль (1024 А-сканов) можно получить в среднем всего за 0,04 с. За это время глазное яблоко совершает только микросаккадные движения с амплитудой в несколько угловых секунд, не влияющих на процесс исследования . Во-вторых, стала возможна 3D-реконструкция изображения, позволяющая оценить профиль исследуемой структуры и ее топографию. Получение множества изображений одновременно при спектральной ОКТ дало возможность диагностики небольших по размерам патологических очагов. Так, при TD-OCT макула отображается по данным 6 радиальных сканов в противовес 128–200 сканам аналогичной области при выполнении SD-OCT . Благодаря высокому разрешению можно четко визуализировать слои сетчатки и внутренние слои сосудистой оболочки. Итогом выполнения стандартного исследования SD-OCT является протокол, представляющий полученные результаты как графически, так и в абсолютных значениях. Первый коммерческий спектральный оптический когерентный томограф был разработан в 2006 г., им стал RTVue 100 (Optovue, США).

В настоящее время некоторые спектральные томографы обладают дополнительными протоколами сканирования, к которым относятся: модуль анализа пигментного эпителия, лазерный сканирующий ангиограф, модуль увеличенной глубины изображения (Enhanced depth imagine, EDI-OCT), глаукомный модуль (табл. 2).

Предпосылкой для разработки модуля увеличенной глубины изображения (EDI-OCT) было ограничение визуализации сосудистой оболочки с помощью спектральной ОКТ за счет поглощения света пигментным эпителием сетчатки и рассеивания его структурами хориоидеи . Ряд авторов использовали спектрометр с длиной волны 1050 нм, с помощью которого удалось качественно визуализировать и провести количественную оценку собственно сосудистой оболочки . В 2008 г. был описан способ получения изображения сосудистой оболочки, который был реализован путем размещения SD-OCТ прибора достаточно близко к глазу, в результате чего стало возможным получение четкого изображение хориоидеи, толщину которой также можно было измерить (табл. 1) . Принцип метода заключается в возникновении зеркальных артефактов из преобразования Фурье. При этом формируется 2 симметричных изображения – позитивное и негативное относительно нулевой линии задержки. Следует отметить, что чувствительность метода снижается с увеличением расстояния от интересующей ткани глаза до этой условной линии. Интенсивность отображения слоя пигментного эпителия сетчатки характеризует чувствительность метода – чем ближе слой к линии нулевой задержки, тем больше его рефлективность. Большинство приборов этого поколения предназначено для исследования слоев сетчатки и витреоретинального интерфейса, поэтому сетчатка расположена ближе к нулевой линии задержки, чем сосудистая оболочка. Во время обработки сканов нижняя половина изображения, как правило, удаляется, отображается только его верхняя часть. Если смещать ОКТ-сканы так, чтобы они пересекли линию нулевой задержки, то сосудистая оболочка окажется ближе к ней, это позволит визуализировать ее более четко . В настоящее время модуль увеличенной глубины изображения доступен у томографов Spectralis (Heidelberg Engineering, Германия) и Cirrus HD-OCT (Carl Zeiss Meditec, США) . Технология EDI-OCT применяется не только для исследования сосудистой оболочки при различной глазной патологии, но и с целью визуализации решетчатой пластинки и оценки ее смещения в зависимости от стадии глаукомы .
К методам Fourier-domain-OCT также относится ОКТ с перестраиваемым источником (swept-source OCT, SS-OCT; deep range imaging, DRI-OCT). В SS-OCT используются лазерные источники со свипированием частоты, т. е. лазеры, у которых частота излучения перестраивается с большой скоростью в пределах определенной спектральной полосы. При этом регистрируется изменение не частоты, а амплитуды отраженного сигнала во время цикла перестройки частоты . В приборе используется 2 параллельных фотодетектора, благодаря которым скорость сканирования составляет 100 тыс. А-сканов/с (в отличие от 40 тыс. А-сканов в SD-OCT). Технология SS-OCT обладает рядом преимуществ. Длина волны 1050 нм, используемая в SS-OCT (в SD-OCT длина волны – 840 нм), обеспечивает возможность четкой визуализации глубоких структур, таких как хориоидеа и решетчатая пластинка, при этом качество изображения в значительно меньшей степени зависит от расстояния интересующей ткани до линии нулевой задержки, как в EDI-OCT . Кроме того, при данной длине волны происходит меньшее рассеивание света при его прохождении сквозь мутный хрусталик, что обеспечивает более четкие изображения у пациентов с катарактой. Окно сканирования охватывает 12 мм заднего полюса (для сравнения: у SD-OCT – 6–9 мм), поэтому на одном скане одновременно могут быть представлены зрительный нерв и макула . Результатами исследования методом SS-OCT являются карты, которые могут быть представлены в виде общей толщины сетчатки или отдельных ее слоев (слой нервных волокон сетчатки, слой ганглиозных клеток вместе с внутренним плексиморфным слоем, хориоидеа). Технология swept-source OCT активно применяется для исследований патологии макулярной зоны, хориоидеи, склеры, стекловидного тела, а также для оценки слоя нервных волокон и решетчатой пластинки при глаукоме . В 2012 г. был представлен первый коммерческий Swept-Source OCT, реализованный в приборе Topcon Deep Range Imaging (DRI) OCT-1 Atlantis 3D SS-OCT (Topcon Medical Systems, Japan). С 2015 г. на зарубежном рынке стал доступен коммерческий образец DRI OCT Triton (Topcon, Japan) cо скоростью сканирования 100 тыс. А-сканов/с и разрешением 2–3 мкм.
Традиционно ОКТ использовалась для пред- и послеоперационной диагностики. С развитием технологического процесса стало возможно использование ОКТ-технологии, интегрированной в хирургический микроскоп. В настоящее время предлагаются сразу несколько коммерческих устройств с функцией выполнения интраоперационной ОКТ. Envisu SD-OIS (spectral-domain ophthalmic imaging system, SD-OIS, Bioptigen, США) – спектральный оптический когерентный томограф, предназначенный для визуализации ткани сетчатки, также с его помощью можно получить изображения роговицы, склеры и конъюнктивы. SD-OIS включает в себя портативный зонд и установки микроскопа, имеет осевое разрешение 5 мкм и скорость сканирования 27 кГц. Другая компания – OptoMedical Technologies GmbH (Германия) также разработала и представила ОКТ-камеру, которая может быть установлена на операционный микроскоп. Камера может быть использована для визуализации переднего и заднего сегментов глаза. Компания указывает, что данное устройство может быть полезным при выполнении таких хирургических пособий, как пересадка роговицы, операции по поводу глаукомы, хирургия катаракты и витреоретинальная хирургия. OPMI Lumera 700/Rescan 700 (Carl Zeiss Meditec, США), выпущенный в 2014 г., является первым коммерчески доступным микроскопом с интегрированным в него оптическим когерентным томографом. Оптические пути микроскопа используются для получения ОКТ-изображения в реальном времени. С помощью прибора можно измерить толщину роговицы и радужки, глубину и угол передней камеры во время хирургического вмешательства. ОКТ подходит для наблюдения и контроля нескольких этапов в хирургии катаракты: лимбальных разрезов, капсулорексиса и факоэмульсификации. Кроме того, система может обнаружить остатки вискоэластика и контролировать положение линзы во время и в конце операции. Во время хирургического вмешательства на заднем сегменте можно визуализировать витреоретинальные спайки, отслойку задней гиалоидной мембраны, наличие фовеолярных изменений (отек, разрыв, неоваскуляризация, кровоизлияние). В настоящее время в дополнение к уже имеющимся разрабатываются новые установки .
ОКТ – по сути, метод, позволяющий оценить на гистологическом уровне морфологию тканей (форму, структуру, размер, пространственную организацию в целом) и их составных частей. Приборы, которые включают в себя современные ОКТ-технологии и такие методы, как фотоакустическая томография, спектроскопическая томография, поляризационная томография, допплерография и ангиография, эластография, оптофизиология, дают возможность оценить функциональное (физиологическое) и метаболическое состояние исследуемых тканей. Поэтому в зависимости от возможностей, которыми может располагать ОКТ, ее принято классифицировать на морфологическую, функциональную и мультимодальную.
Фотоакустическая томография (photoacoustic tomography, PAT) использует различия в поглощении тканями коротких лазерных импульсов, последующем их нагреве и крайне быстром терморасширении для получения ультразвуковых волн, которые детектируются пьезоэлектрическими приемниками. Преобладание гемоглобина в качестве основного абсорбента данного излучения означает, что с помощью фотоакустической томографии можно получить контрастные изображения сосудистой сети. В то же время метод дает относительно мало информации о морфологии окружающей ткани. Таким образом, сочетание фотоакустической томографии и ОКТ позволяет оценить микрососудистую сеть и микроструктуру окружающих тканей .
Способность биологических тканей поглощать или рассеивать свет в зависимости от длины волны может быть использована для оценки функциональных параметров – в частности, насыщения гемоглобина кислородом. Этот принцип реализован в спектроскопической ОКТ (Spectroscopic OCT, SP-OCT). Хотя метод в настоящее время находится в стадии разработки, а его использование ограничивается экспериментальными моделями, тем не менее он представляется перспективным в плане исследования насыщения кислородом крови, предраковых поражений, внутрисосудистых бляшек и ожогов .
Поляризационная ОКТ (Polarization sensitive OCT, PS-OCT) измеряет состояние поляризации света и основана на том факте, что некоторые ткани могут изменить состояние поляризации зондирующего светового пучка. Различные механизмы взаимодействия света и тканей могут вызвать такие изменения состояния поляризации, как двойное лучепреломление и деполяризацию, что уже частично ранее использовалось в лазерной поляриметрии. Двулучепреломляющими тканями являются строма роговицы, склера, глазные мышцы и сухожилия, трабекулярная сеть, слой нервных волокон сетчатки и рубцовая ткань . Эффект деполяризации наблюдается при исследовании меланина, содержащегося в тканях пигментного эпителия сетчатки (ПЭС), пигментном эпителии радужки, невусах и меланомах хориоидеи, а также в виде скоплений пигмента сосудистой оболочки . Первый поляризационный низкокогерентный интерферометр был реализован в 1992 г. . В 2005 г. PS-OCT был продемонстрирован для визуализации сетчатки человеческого глаза in vivo . Одно из преимуществ метода PS-OCT заключается в возможности детальной оценки ПЭС, особенно в тех случаях, когда на ОКТ, например, при неоваскулярной макулодистрофии, пигментный эпителий плохо различим из-за сильного искажения слоев сетчатки и обратного светорассеяния (рис. 1). Есть и прямое клиническое предназначение этого метода. Дело в том, что визуализация атрофии слоя ПЭС может объяснить, почему у этих пациентов на фоне лечения после анатомического восстановления сетчатки острота зрения не улучшается . Поляризационная ОКТ также применяется для оценки состояния слоя нервных волокон при глаукоме . Следует отметить, что и другие структуры, деполяризующие в пределах пораженной сетчатки, могут быть обнаружены с помощью PS-OCT. Первоначальные исследования у больных с диабетическим макулярным отеком показали, что жесткие экссудаты являются деполяризующими структурами. Поэтому PS-OCT может быть использована для обнаружения и количественной оценки (размер, количество) жестких экссудатов при этом состоянии .
Оптическая когерентная эластография (optical coherence elastography, OCE) используется для определения биомеханического свойства тканей. ОКТ-эластография является аналогом ультразвуковой сонографии и эластографии, но с преимуществами, присущими ОКТ, такими как высокое разрешение, неинвазивность, получение изображений в реальном времени, глубина проникновения в ткани. Метод впервые был продемонстрирован в 1998 г. для изображения механических свойств in vivo кожи человека . Экспериментальные исследования донорских роговиц с помощью данного метода продемонстрировали, что ОКТ-эластография может количественно оценить клинически значимые механические свойства данной ткани .
Первые спектральные ОКТ с функцией допплерографии (Doppler optical coherence tomography, D-OCT) для измерения глазного кровотока появились в 2002 г. . В 2007 г. был измерен суммарный кровоток сетчатки с помощью кольцевых В-сканов вокруг зрительного нерва . Однако метод имеет ряд ограничений. Например, с помощью допплеровской ОКТ трудно различить медленный кровоток в мелких капиллярах . Помимо этого, большинство сосудов проходят почти перпендикулярно к лучу скана, поэтому обнаружение сигнала допплеровского сдвига критически зависит от угла падающего света . Попыткой преодолеть недостатки D-OCT является ОКТ-ангиография. Для реализации данного метода была необходима высококонтрастная и сверхскоростная технология ОКТ. Ключевым в развитии и усовершенствовании методики стал алгоритм под названием «сплит-спектральная ангиография с декорреляцией амплитуды» (split-spectrum amplitude decorrelation angiography, SS-ADA). SS-ADA-алгоритм подразумевает проведение анализа при использовании разделения полного спектра оптического источника на несколько частей с последующим раздельным подсчетом декорреляции для каждого частотного диапазона спектра. Одновременно проводится анизотропный анализ декорреляции и выполняется ряд сканов с полной спектральной шириной, которые обеспечивают высокое пространственное разрешение сосудистой сети (рис. 2, 3) . Данный алгоритм используется в томографе Avanti RTVue XR (Optovue, США). ОКТ-ангиография является неинвазивной трехмерной альтернативой обычной ангиографии. К преимуществам метода относятся неинвазивность исследования, отсутствие необходимости применения флуоресцентных красителей, возможность измерения глазного кровотока в сосудах в количественном выражении.

Оптофизиология – способ неинвазивного изучения физиологических процессов в тканях с помощью ОКТ. ОКТ чувствительна к пространственным изменениям в оптическом отражении или рассеянии света тканями, связанными с локальными изменениями показателя преломления. Физиологические процессы, происходящие на клеточном уровне, такие как деполяризация мембраны, набухание клеток и изменения метаболизма, могут привести к небольшим, но обнаруживаемым изменениям локальных оптических свойств биологической ткани. Первые доказательства того, что ОКТ может быть использована для получения и оценки физиологической реакции на световую стимуляцию сетчатки, были продемонстрированы в 2006 г. . В последующем данная методика была применена для исследования человеческой сетчатки in vivo. В настоящее время рядом исследователей продолжается работа в этом направлении .
ОКТ – один из самых успешных и широко используемых методов визуализации в офтальмологии. В настоящее время приборы для технологии находятся в списке продукции более чем 50 компаний в мире. За последние 20 лет разрешение улучшилось в 10 раз, а скорость сканирования увеличилась в сотни раз. Непрерывный прогресс в технологии ОКТ превратил этот метод в ценный инструмент для исследования структур глаза на практике. Разработка за последнее десятилетие новых технологий и дополнений ОКТ позволяет поставить точный диагноз, осуществлять динамическое наблюдение и оценивать результаты лечения. Это пример того, как новые технологии могут решать реальные медицинские проблемы. И, как это часто бывает с новыми технологиями, дальнейший опыт применения и разработка приложений могут дать возможность более глубокого понимания патогенеза патологии глаз.

Литература

1. Huang D., Swanson E.A., Lin C.P. et al. Optical coherence tomography // Science. 1991. Vol. 254. № 5035. P. 1178–1181.
2. Swanson E.A., Izatt J.A., Hee M.R. et al. In-vivo retinal imaging by optical coherence tomography // Opt Lett. 1993. Vol. 18. № 21. P. 1864–1866.
3. Fercher A.F., Hitzenberger C.K., Drexler W., Kamp G., Sattmann H. In-Vivo optical coherence tomography // Am J Ophthalmol. 1993. Vol. 116. № 1. P. 113–115.
4. Izatt J.A., Hee M.R., Swanson E.A., Lin C.P., Huang D., Schuman J.S., Puliafito C.A., Fujimoto J.G. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography // Arch Ophthalmol. 1994. Vol. 112. № 12. P. 1584–1589.
5. Puliafito C.A., Hee M.R., Lin C.P., Reichel E., Schuman J.S., Duker J.S., Izatt J.A., Swanson E.A., Fujimoto J.G. Imaging of macular diseases with optical coherence tomography // Ophthalmology. 1995. Vol. 102. № 2. P. 217–229.
6. Schuman J.S., Hee M.R., Arya A.V., Pedut-Kloizman T., Puliafito C.A., Fujimoto J.G., Swanson E.A. Optical coherence tomography: a new tool for glaucoma diagnosis // Curr Opin Ophthalmol. 1995. Vol. 6. № 2. P. 89–95.
7. Schuman J.S., Hee M.R., Puliafito C.A., Wong C., Pedut-Kloizman T., Lin C.P., Hertzmark E., Izatt .JA., Swanson E.A., Fujimoto J.G. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 5. P. 586–596.
8. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of macular holes // Ophthalmology. 1995 Vol. 102. № 5. P. 748–756.
9. Hee M.R., Puliafito C.A., Wong C., Reichel E., Duker J.S., Schuman J.S., Swanson E.A., Fujimoto J.G. Optical coherence tomography of central serous chorioretinopathy // Am J Ophthalmol.1995. Vol. 120. № 1. P. 65–74.
10. Hee M.R., Puliafito C.A., Wong C., Duker J.S., Reichel E., Rutledge B., Schuman J.S., Swanson E.A., Fujimoto J.G. Quantitative assessment of macular edema with optical coherence tomography // Arch Ophthalmol. 1995. Vol. 113. № 8. P. 1019–1029.
11. Висковатых А.В., Пожар В.Э., Пустовойт В.И. Разработка оптического когерентного томографа для офтальмологии на быстроперестраиваемых акустооптических фильтрах // Сборник материалов III Евразийского конгресса по медицинской физике и инженерии «Медицинская физика – 2010». 2010. Т. 4. C. 68–70. М., 2010 .
12. Drexler W., Morgner U., Ghanta R.K., Kartner F.X., Schuman J.S., Fujimoto J.G. Ultrahigh-resolution ophthalmic optical coherence tomography // Nat Med. 2001. Vol. 7. № 4. P. 502–507.
13. Drexler W., Sattmann H., Hermann B. et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography // Arch Ophthalmol. 2003. Vol. 121. P. 695–706.
14. Ko T.H., Fujimoto J.G., Schuman J.S. et al. Comparison of ultrahigh and standard resolution optical coherence tomography for imaging of macular pathology // Arch Ophthalmol. 2004. Vol. 111. P. 2033–2043.
15. Ko T.H., Adler D.C., Fujimoto J.G. et al. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source // Opt Express. 2004. Vol. 12. P. 2112–2119.
16. Fercher A.F., Hitzenberger C.K., Kamp G., El-Zaiat S.Y. Measurement of intraocular distances by backscattering spectral interfereometry // Opt Commun. 1995. Vol. 117. P. 43–48.
17. Choma M.A., Sarunic M.V., Yang C.H., Izatt J.A. Sensitivity advantage of swept source and Fourier domain optical coherence tomography // Opt Express. 2003. Vol. 11. № 18. P. 2183–2189.
18. Астахов Ю.С., Белехова С.Г. Оптическая когерентная томография: как все начиналось и современные диагностические возможности методики // Офтальмологические ведомости. 2014. Т. 7. № 2. C. 60–68. .
19. Свирин А.В., Кийко Ю.И., Обруч Б.В., Богомолов А.В. Спектральная когерентная оптическая томография: принципы и возможности метода // Клиническая офтальмология. 2009. Т. 10. № 2. C. 50–53 .
20. Kiernan D.F., Hariprasad S.M., Chin E.K., Kiernan C.L, Rago J., Mieler W.F. Prospective comparison of cirrus and stratus оptical coherence tomography for quantifying retinal thickness // Am J Ophthalmol. 2009. Vol. 147. № 2. P. 267–275.
21. Wang R.K. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a monte carlo study towards optical clearing of biotissues // Phys Med Biol. 2002. Vol. 47. № 13. P. 2281–2299.
22. Povazay B., Bizheva K., Hermann B. et al. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm // Opt Express. 2003. Vol. 11. № 17. P. 1980–1986.
23. Spaide R.F., Koizumi H., Pozzoni M.C. et al. Enhanced depth imaging spectral-domain optical coherence tomography // Am J Ophthalmol. 2008. Vol. 146. P. 496–500.
24. Margolis R., Spaide R.F. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes // Am J Ophthalmol. 2009. Vol. 147. P. 811–815.
25. Ho J., Castro D.P., Castro L.C., Chen Y., Liu J., Mattox C., Krishnan C., Fujimoto J.G., Schuman J.S., Duker J.S. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. № 7. P. 3714–3720.
26. Anand R. Enhanced depth optical coherence tomographyiImaging - a review // Delhi J Ophthalmol. 2014. Vol. 24. № 3. P. 181–187.
27. Rahman W., Chen F.K., Yeoh J. et al. Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography // Invest Ophthalmol Vis Sci. 2011. Vol. 52. № 5. P. 2267–2271.
28. Park S.C., Brumm J., Furlanetto R.L., Netto C., Liu Y., Tello C., Liebmann J.M., Ritch R. Lamina cribrosa depth in different stages of glaucoma // Invest Ophthalmol Vis Sci. 2015. Vol. 56. № 3. P. 2059–2064.
29. Park S.C., Hsu A.T., Su D., Simonson J.L., Al-Jumayli M., Liu Y., Liebmann J.M., Ritch R. Factors associated with focal lamina cribrosa defects in glaucoma // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 13. P. 8401–8407.
30. Faridi O.S., Park S.C., Kabadi R., Su D., De Moraes C.G., Liebmann J.M., Ritch R. Effect of focal lamina cribrosa defect on glaucomatous visual field progression // Ophthalmology. 2014 Vol. 121. № 8. P. 1524–1530.
31. Potsaid B., Baumann B., Huang D., Barry S., Cable A.E., Schuman J.S., Duker J.S., Fujimoto J.G. Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second // Opt Express 2010. Vol. 18. № 19. P. 20029–20048.
32. Adhi M., Liu J.J., Qavi A.H., Grulkowski I., Fujimoto J.G., Duker J.S. Enhanced visualization of the choroido-scleral interface using swept-source OCT // Ophthalmic Surg Lasers Imaging Retina. 2013. Vol. 44. P. 40–42.
33. Mansouri K., Medeiros F.A., Marchase N. et al. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography // Ophthalmology. 2013. Vol. 120. № 12. P. 2508–2516.
34. Mansouri K., Nuyen B., Weinreb R.N. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
35. Takayama K., Hangai M., Kimura Y. et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using sweptsource optical coherence tomography // Invest Ophthalmol Vis Sci. 2013. Vol. 54. № 7. P. 4798–4807.
36. Park H.Y., Shin H.Y., Park C.K. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging // Am J Ophthalmol. 2014. Vol. 157. № 3. P. 550–557.
37. Michalewska Z., Michalewski J., Adelman R.A., Zawislak E., Nawrocki J. Choroidal thickness measured with swept source optical coherence tomography before and after vitrectomy with internal limiting membrane peeling for idiopathic epiretinal membranes // Retina. 2015. Vol. 35. № 3. P. 487–491.
38. Lopilly Park H.Y., Lee N.Y., Choi J.A., Park C.K. Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia // Am J Ophthalmol. 2014. Vol. 157. № 4. P. 876–884.
39. Omodaka K., Horii T., Takahashi S., Kikawa T., Matsumoto A., Shiga Y., Maruyama K., Yuasa T., Akiba M., Nakazawa T. 3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma // PLoS One. 2015 Apr 15. Vol. 10 (4). e0122347.
40. Mansouri K., Nuyen B., Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
41. Binder S. Optical coherence tomography/ophthalmology: Intraoperative OCT improves ophthalmic surgery // BioOpticsWorld. 2015. Vol. 2. P. 14–17.
42. Zhang Z.E., Povazay B., Laufer J., Aneesh A., Hofer B., Pedley B., Glittenberg C., Treeby B., Cox B., Beard P., Drexler W. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging // Biomed Opt Express. 2011. Vol. 2. № 8. P. 2202–2215.
43. Morgner U., Drexler W., Ka..rtner F. X., Li X. D., Pitris C., Ippen E. P., and Fujimoto J. G. Spectroscopic optical coherence tomography // Opt Lett. 2000. Vol. 25. № 2. P. 111–113.
44. Leitgeb R., Wojtkowski M., Kowalczyk A., Hitzenberger C. K., Sticker M., Ferche A. F. Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography // Opt Lett. 2000. Vol. 25. № 11. P. 820–822.
45. Pircher M., Hitzenberger C.K., Schmidt-Erfurth U. Polarization sensitive optical coherence tomography in the human eye // Progress in Retinal and Eye Research. 2011. Vol. 30. № 6. P. 431–451.
46. Geitzinger E., Pircher M., Geitzenauer W., Ahlers C., Baumann B., Michels S., Schmidt-Erfurth U., Hitzenberger C.K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography // Opt Express. 2008. Vol. 16. P. 16410–16422.
47. Pircher M., Goetzinger E., Leitgeb R., Hitzenberger C.K. Transversal phase resolved polarization sensitive optical coherence tomography // Phys Med Biol. 2004. Vol. 49. P. 1257–1263.
48. Mansouri K., Nuyen B., N Weinreb R. Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography // Expert Rev Med Devices. 2013. Vol. 10. № 5. P. 621–628.
49. Geitzinger E., Pircher M., Hitzenberger C.K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina // Opt Express. 2005. Vol. 13. P. 10217–10229.
50. Ahlers C., Gotzinger E., Pircher M., Golbaz I., Prager F., Schutze C., Baumann B., Hitzenberger C.K., Schmidt-Erfurth U. Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography // Invest Ophthalmol Vis Sci. 2010. Vol. 51. P. 2149–2157.
51. Geitzinger E., Baumann B., Pircher M., Hitzenberger C.K. Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography // Opt Express. 2009. Vol. 17. P. 22704–22717.
52. Lammer J., Bolz M., Baumann B., Geitzinger E., Pircher M., Hitzenberger C., Schmidt-Erfurth U. 2010. Automated Detection and Quantification of Hard Exudates in Diabetic Macular Edema Using Polarization Sensitive Optical Coherence Tomography // ARVO abstract 4660/D935.
53. Schmitt J. OCT elastography: imaging microscopic deformation and strain of tissue // Opt Express. 1998. Vol. 3. № 6. P. 199–211.
54. Ford M.R., Roy A.S., Rollins A.M. and Dupps W.J.Jr. Serial biomechanical comparison of edematous,normal, and collagen crosslinked human donor corneas using optical coherence elastography // J Cataract Refract Surg. 2014. Vol. 40. № 6. P. 1041–1047.
55. Leitgeb R., Schmetterer L.F., Wojtkowski M., Hitzenberger C.K., Sticker M., Fercher A.F. Flow velocity measurements by frequency domain short coherence interferometry. Proc. SPIE. 2002. P. 16–21.
56. Wang Y., Bower B.A., Izatt J.A., Tan O., Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2007. Vol. 12. P. 412–415.
57. Wang R. K., Ma Z., Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography // Opt. Lett. 2006. Vol. 31. № 20. P. 3001–3003.
58. Wang R. K., Lee A. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo // Opt Express. 2009. Vol. 17. № 11. P. 8926–8940.
59. Wang Y., Bower B. A., Izatt J. A., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography // J Biomed Opt. 2008. Vol. 13. № 6. P. 640–643.
60. Wang Y., Fawzi A., Tan O., Gil-Flamer J., Huang D. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography // Opt Express. 2009. Vol. 17. № 5. P. 4061–4073.
61. Jia Y., Tan O., Tokayer J., Potsaid B., Wang Y., Liu J.J., Kraus M.F., Subhash H., Fujimoto J.G., Hornegger J., Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography // Opt Express. 2012. Vol. 20. № 4. P. 4710–4725.
62. Jia Y., Wei E., Wang X., Zhang X., Morrison J.C., Parikh M., Lombardi L.H., Gattey D.M., Armour R.L., Edmunds B., Kraus M.F., Fujimoto J.G., Huang D. Optical coherence tomography angiography of optic disc perfusion in glaucoma // Ophthalmology. 2014. Vol. 121. № 7. P. 1322–1332.
63. Bizheva K., Pflug R., Hermann B., Povazay B., Sattmann H., Anger E., Reitsamer H., Popov S., Tylor J.R., Unterhuber A., Qui P., Ahnlet P.K., Drexler W. Optophysiology: depth resolved probing of retinal physiology with functional ultrahigh resolution optical coherence tomography // PNAS (Proceedings of the National Academy of Sciences of America). 2006. Vol. 103. № 13. P. 5066–5071.
64. Tumlinson A.R., Hermann B., Hofer B., Považay B., Margrain T.H., Binns A.M., Drexler W., Techniques for extraction of depth-resolved in vivo human retinal intrinsic optical signals with optical coherence tomography // Jpn. J. Ophthalmol. 2009. Vol. 53. P. 315–326.


При проблемах со зрением в одном или обоих глазах назначается комплексная диагностика. Оптическая когерентная томография - современная, высокоточная диагностическая процедура, позволяющая получить четкие изображения в срезе структур глазного яблока - роговицы и сетчатки глаза. Исследование проводят по показаниям, чтобы результаты были максимально точными. К процедуре важно правильно подготовиться.

Когда назначают оптическую когерентную томографию?

Современная офтальмология имеет в своем распоряжении множество диагностических технологий и методик, позволяющих в точности исследовать сложные внутриглазные структуры, благодаря чему лечение и реабилитация проходят намного успешнее. Оптическая когерентная томография глаза - информативный, бесконтактный и безболезненный метод, с помощью которого удается детально изучить прозрачные, невидимые при традиционных исследованиях глазные структуры в поперечном срезе.

Процедура проводится по показаниям. ОКТ дает возможность диагностировать такие офтальмологические заболевания:

  • макулярный отек и разрыв;
  • деформация диска зрительного нерва (ДЗН);
  • глаукома;
  • ретинальная дистрофия стекловидного тела;
  • расслоение сетчатки;
  • дегенерация макулы;
  • субретинальная неоваскулярная и эпиретинальная мембрана;
  • сенильная макулярная дистрофия.

Функциональность прибора дает возможность доктору детально обследовать больной орган и получить полную информацию о его состоянии.

Оптико-когерентный томограф бывает 2 разновидностей - для сканирования переднего и заднего отрезка. Современные аппараты обладают обеими функциями, поэтому результаты диагностики можно получить более расширенные. ОКТ глаза часто делается пациентам после операции по удалению глаукомы. Метод детально показывает эффективность терапии в послеоперационный период, тогда как электротомография, офтальмоскопирование, биомикроскопия, МРТ или КТ глаза не в состоянии предоставить данные такой точности.

Плюсы процедуры

ОКТ сетчатки глаза может назначаться пациентам в любом возрасте.

Процедура бесконтактная, безболезненная и в то же время максимально информативная. Во время сканирования на пациента не воздействует радиационное излучение, так как в процессе обследования применяются свойства инфракрасных лучей, которые для глаз абсолютно безвредны. Томография позволяет диагностировать патологические изменения сетчатки даже на начальных стадиях развития, что существенно увеличивает шансы на успешное излечение и быстрое восстановление.

Как проходит подготовка?


Некоторые препараты в подготовительном периоде запрещены.

Ограничений в еде и питье перед проведением процедуры нет. Накануне исследования нельзя употреблять алкоголь и другие запрещенные вещества, еще врач может попросить перестать применять медикаментозные средства некоторых групп. За несколько минут до исследования в глаза закапывают капли, расширяющие зрачок. Пациенту важно сконцентрировать взгляд на мигающей точке, расположенной в линзе фокус-камеры. Моргать, разговаривать и двигать головой запрещено.

Как делается ОКТ?

Оптическая когерентная томография сетчатки длится в среднем до 10 мин. Пациента размещают в положении сидя, томограф с оптической камерой устанавливают на расстоянии 9 мм от глаза. Когда оптимальная видимость будет достигнута, камера фиксируется, далее врач регулирует изображение, чтобы получить максимально точный снимок. Когда картинка станет точной, выполняется серия снимков.

Готовый результат обследования может иметь вид карты.

  • наличие или отсутствие изменений внешних глазных структур;
  • взаиморасположение слоев глазного яблока;
  • наличие патологических образований и включений;
  • пониженная или повышенная прозрачность тканей;
  • толщина изучаемых структур;
  • размеры и наличие деформаций на исследуемой поверхности.

Расшифровка томограммы представлена в виде таблицы, карты либо протокола, которые могут максимально точно показать состояние исследуемых участков зрительной системы и установить точный диагноз даже на ранних стадиях. При необходимости врач может назначить повторное исследование ОКТ это позволит проследить динамику прогрессирования патологии, а также эффективность лечебного процесса.