Что такое телескоп определение. Что такое телескоп и что в него можно увидеть? Кто изобрел телескоп

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало , а для компенсации его аберраций служат линзы.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Телескопы.

Телескоп - это прибор, с помощью которого наблюдают отдаленные объекты путём сбора электромагнитного излучения. Например, видимого света - оптические телескопы.

История телескопов.

Годом изобретения телескопа, а вернее зрительной трубы, принято считать 1608 год, когда голландец Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее, в выдаче патента ему было отказано в силу того, что и другие мастера, Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже имели свои подзорные трубы, а последний тоже вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент.

Позднейшие исследования показали, что, вероятно, подзорные трубы были известны и ранее.

Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи, датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Сначала, это была всего лишь зрительная труба - комбинация очковых линз, сегодня бы ее назвали рефрактор.

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилео Галилей.

В 1609 году Галилео Галилей создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями.

Однако благодаря этому прибору, Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Название «телескоп» было предложено в 1611 году греческим математиком Иоаннисом Димисианосом для одного из инструментов Галилея. Сам Галилей использовал для своих телескопов термин «Perspicillum».

Телескопы Галилея. Флоренция. Музей Галилея.

Время и развитие науки предоставило исследователям возможности создавать более мощные телескопы, которые давали видеть много больше.

Астрономы начали использовать объективы с большим фокусным расстоянием. Телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров, так как долгое время не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс построил телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих.

К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Телескоп продолжал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон - уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину, и доставляли множество неудобств при работе с ними и их настройке. Недостатки телескопов-рефракторов заставили великие умы искать новые решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировка лучей стала производиться с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга в этом целиком и полностью принадлежит Исааку Ньютону, именно Ньютон сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм Ньютон изготовил из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким.

Телескоп Ньютона. Лондон. Астрономический музей.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для телескопов-рефлекторов.

Эволюционные прорывы в телескопостроении.

Годом рождения нового типа телескопа принято считать 1720 год, когда в Англии был построен первый функциональный телескоп-рефлектор диаметром в 15 сантиметров.

Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Новая двухзеркальная система в телескопах была предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен сам не смог из-за отсутствия технической возможности изготовления нужных зеркал, но сегодня его чертежи реализованы во многих проектах.

Именно телескопы Ньютона и Кассегрена считаются первыми «современными» телескопами.

В космическом телескопе Хаббл были использованы принципы телескопа Кассегрена.

Фундаментальный принцип Ньютона с применением одного вогнутого зеркала был использован в СССР в 1974 году в Специальной астрофизической обсерватории.

Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году создан Йеркский телескоп-рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны - дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого - крон и тяжелого - флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равных в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской выплавлял зеркала из меди и олова. Главный труд его жизни - большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн.

Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря своему телескопу, он открыл ряд неизвестных спиральных туманностей.

Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркало из посеребренного стекла. И опыт удался. Уже в 1890-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Это был очередной прорыв в телескопостроении.

Этот прорыв не обошелся без участия русских ученых. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство очень качественных линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна - хроматизма.

Лишь к концу 19 века был изобретен новый метод производства зеркальных линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра.

Эти принципиально новые зеркальные линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света.

Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал.

В конце 19 века астроном-любитель Кросслей обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп.

Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты.

С 1908 по 1935 год различные обсерватории мира создали более полутора десятков рефлекторов с объективом, превышающих йеркский. Самый большой телескоп был установлен в обсерватории Моунт-Вильсон, его диаметр 256 сантиметров. И даже этот предел совсем скоро был превзойден вдвое.

В 1976 году ученые СССР построили 6-метровый телескоп БТА - Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом. Создатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА был оттеснен во второй десяток крупных телескопов мира.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы - главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений - на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 метра.

Начиная, с 2002 года эти два телескопа, расположенные на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп.

Телескопы.

История телескопа прошла долгий путь - от зрительных труб итальянских мастеров оптиков-стекольщиков до современных гигантских телескопов-спутников.

Виды телескопов.

В наше время существуют телескопы для всех диапазонов электромагнитного спектра:

Оптические телескопы,

Радиотелескопы,

Рентгеновские телескопы,

Гамма-телескопы.

Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.

Оптические телескопы.

Оптический визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом, а сам телескоп превращается в астрограф.

Оптический передвижной телескоп-астрограф.

По своей оптической схеме большинство оптических телескопов делятся на:

Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.

Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало.

Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало, а для компенсации его аберраций служат линзы.

Стационарный оптический телескоп.

Кроме того, для наблюдений за Солнцем профессиональные астрономы используют специальные солнечные телескопы, отличающиеся конструктивно от традиционных звездных телескопов.

Радиотелескопы.

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы.

Комплекс радиотелескопов.

Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). В таком режиме с 1997 по 2003 год работал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.

Рентгеновские телескопы.

Рентгеновский телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому рентгеновские телескопы размещают на космических ракетах и на искусственных спутниках Земли.

Космический рентгеновский телескоп.

Гамма-телескопы.

Гамма-телескоп - это телескоп, предназначенный для наблюдения удаленных объектов в спектре гамма-излучения. Гамма-телескопы используются для поиска и исследования дискретных источников гамма-излучения, измерения энергетических спектров галактического и внегалактического диффузного гамма-излучения, исследования гамма-всплесков и природы тёмной материи. Среди гамма-телескопов различают:

Космические гамма-телескопы, детектирующие гамма-кванты непосредственно в космосе.

Космический гамма-телескоп.

Наземные черенковские телескопы, устанавливающие параметры гамма-квантов (такие как энергия и направление прихода) путём наблюдения за возмущениями, которые вызывают гамма-кванты в атмосфере.

Наземный черенковский гамма-телескоп.

Космические телескопы.

Для чего телескопы отправляют в космос?

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм-30 м) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса.

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды, инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может считать Южнополярный телескоп (англ. South Pole Telescope), установленный на южном географическом полюсе, работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики, позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы, или в воздух на самолетах или стратосферных шарах. Но наилучшие результаты достигаются при выносе телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом: φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но здесь более существенна другая причина. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем у видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см — 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут).

Однако, объединив два радиотелескопа в радиоинтерферометр, можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии Альфа Центавра).

Тот, кто изобрел телескоп, несомненно, заслуживает уважения и огромной благодарности со стороны всех современных астрономов. Это одно из величайших открытий в истории. Телескоп позволил изучить ближний космос и узнать много нового о строении вселенной.

С чего все началось

Первые попытки создать телескоп приписываются великому Леонардо да Винчи. Патентов и упоминаний о рабочей модели нет, но ученые нашли остатки чертежей и описаний стекол для разглядывания луны. Возможно, это еще один миф об этом уникальном человеке.

Устройство телескопа пришло на ум Томасу Диггесу, который и пытался его создать. Он использовал выпуклое стекло и вогнутое зеркало. Само по себе изобретение могло работать, и, как покажет история, подобное устройство будет создано вновь. Но технически еще не было средств для воплощения этого замысла, создать рабочую модель ему так и не удалось. Наработки остались в тот период невостребованными, а Диггес вошел в историю астрономии за описание

Тернистый путь

В каком году изобрели телескоп, вопрос по-прежнему остается спорным. В 1609-м голландский ученый Ханс Липперсгей представил патентному бюро свое увеличительное изобретение. Назвал он его Но патент был отклонен в силу чрезмерной простоты, хотя сама подзорная труба плотно вошла в обиход. Особенную популярность она приобрела у мореходов, а для астрономических нужд оказалась слабовата. Шаг вперед был уже сделан.

В том же году попала в руки Томаса Хариота, изобретение ему пришлось по нраву, но нуждалось в значительной доработке первоначального образца. Благодаря его работе астрономы впервые смогли увидеть, что луна имеет свой рельеф.

Галилео Галилей

Узнав о попытке создания специального прибора для увеличения звезд, Галилей по-настоящему загорелся этой идеей. Итальянец решил создать для своих исследований подобную конструкцию. Математические знания помогли ему с расчетами. Устройство состояло из трубки и вставленных в нее линз, изготовленных для людей с плохим зрением. По сути, это и был первый телескоп.

Сегодня этот вид телескопов называют рефракторными. Благодаря усовершенствованной конструкции Галилео сделал немало открытий. Он сумел доказать, что луна имеет форму сферы, разглядел на ней кратеры и горы. 20-кратное увеличение позволило рассмотреть 4 наличие колец у Сатурна и много чего еще. На тот момент устройство оказалось самым совершенным прибором, но он имел свои недостатки. Узкая трубка значительно сокращала круг обзора, а искажения, полученные за счет большого числа линз, делали картинку размытой.

Эпоха рефракторных телескопов

Четко ответить на вопрос, кто первым изобрел телескоп, не получится, ведь Галилей только усовершенствовал уже существующую трубу для созерцания неба. Без идеи Липперсгея ему могла и не прийти в голову эта мысль. В последующие годы шло постепенное совершенствование прибора. Развитие значительно тормозила невозможность создания больших линз.

Толчком дальнейшего развития стало изобретение штатива. Трубу теперь не надо было держать в руках продолжительное время. Благодаря этому стало возможным удлинение трубки. Христиан Гюйгенс в 1656 году представил аппарат с увеличением в 100 раз, достигнуть этого удалось за счет увеличения расстояния между линзами, которые помещались в трубку длиной 7 метров. Спустя 4 года был создан телескоп длиной 45 метров.

Помехой для исследований мог стать даже небольшой ветер. Уменьшения искажения картинки пытались добиться путем дальнейшего увеличения расстояние между линзами. Развитие телескопов пошло в сторону удлинения. Самый длинный из них достигал 70 метров. Такое положение вещей сильно затрудняло работу, да и саму сборку устройства.

Новый принцип

Развитие космической оптики зашло в тупик, но долго так продолжаться не могло. Кто изобрел телескоп принципиально нового образца? Это был один из величайших ученых всех времен - Исаак Ньютон. Вместо линзы для фокусировки стало использоваться вогнутое зеркало, что позволило избавиться от хроматических искажений. Рефракторные телескопы ушли в прошлое, по праву уступив место рефлекторным.

Открытие телескопа, работающего по принципу рефлектора, перевернуло астрономическую науку. Зеркало, использованное в изобретении, Ньютону пришлось делать самостоятельно. Для его изготовления был использован сплав олова, меди и мышьяка. Первая рабочая модель продолжает храниться, по сей день, ее пристанищем стал Лондонский музей астрономии. Но оставалась небольшая проблема. Те, кто изобрел телескоп, еще долгое время не могли создать зеркало идеальной формы.

Прорыв

1720 год стал знаменательной датой для всей астрономической науки. Именно в этом году оптикам удалось создать рефлекторное зеркало диаметром 15 см. к слову сказать, зеркало ньютона имело диаметр всего 4 см. Это был настоящий прорыв, проникнуть в тайны вселенной стало гораздо проще. Миниатюрные телескопы по сравнению с 40-метровыми гигантами были всего 2 метра длиной. Наблюдение за космосом стало доступно большему кругу людей.

Компактные и удобные телескопы могли бы надолго войти в моду, если бы не одно "но". Сплав металла быстро тускнел и тем самым терял свои отражательные свойства. Вскоре зеркальная конструкция была усовершенствована и приобрела новые черты.

Два зеркала

Очередным усовершенствованием устройство телескопа обязано французу Кассегрену. Он придумал использовать 2 стеклянных зеркала вместо одного, сделанного из металлического сплава. Его чертежи оказались рабочими, но самому ему не удалось в этом убедиться, техническое оснащение не позволило воплотить мечту.

Телескопы Ньютона и Кассегрена можно уже считать первыми современными моделями. На их основе продолжается сейчас развитие телескопостроения. По принципу Кассегрена построен современный космический телескоп "Хаббл", который уже принес множество информации человечеству.

Возвращение к основам

Рефлекторы не смогли окончательно одержать победу. Рефракторы триумфально вернулись на пьедестал с изобретением двух новых сортов стекла: крон - более легкого, и флинт - тяжелого. Такая комбинация пришлась в помощь тому, кто изобрел телескоп без ахроматических погрешностей. Это оказался талантливый ученый Дж. Доллонд, в честь него и был назван новый вид объектива - доллондовый.

В 19-м веке рефракторный телескоп пережил свое второе рождение. С развитием технической мысли стало возможным изготавливать линзы идеальной формы и все большего размера. В 1824 году диаметр объектива составлял 24 см, к 1966 году он вырос в два реза, а в 1885 году составил уже 76 сантиметров. Условно говоря, диаметр объектива рос примерно на 1 см в год. О зеркальных устройствах почти забыли, в то время как линзовые теперь росли не в длину, а в сторону увеличения диаметра. Это позволяло улучшить угол обзора и одновременно увеличить картинку.

Великие энтузиасты

Возродили рефлекторные установки астрономы-любители. Одним из них был Уильям Гершель, несмотря на то что основной род его деятельности - это музыка, он сделал немало открытий. Самое первое его открытие - это планета Уран. Небывалый успех окрылил его на создание телескопа большего диаметра. Создав в домашней лаборатории зеркало диаметром 122 см, он сумел рассмотреть 2 неизвестных ранее.

Успехи любителей подталкивали к новым экспериментам. Основную проблему металлических зеркал - быстрое помутнение - так и не удалось преодолеть. Это натолкнуло французского физика Леона Фуко на мысль вставить в телескоп другое зеркало. В 1856 году он изготовил для увеличительного устройства стеклянное зеркало с серебряным напылением. Результат превзошел самые смелые прогнозы.

Еще одно важное дополнение внес Михаил Ломоносов. Он изменил систему так, что зеркало стало вращаться независимо от линзы. Это позволило максимально уменьшить потери световых волн и настраивать изображение. Одновременно с ним о подобном открытии заявил и Гершель.

Сейчас активно используются обе конструкции, и продолжается совершенствование оптики. В дело вступают современные компьютеры и Самый большой телескоп из тех, что расположены на Земле, - это большой Канарский телескоп. Но скоро его величие затмится, уже в работе проекты с зеркалами диаметром 30 м против его 10,4 м.

Телескопы-гиганты строят на возвышенности, чтобы максимально исключить преломление картинки земной атмосферой. Перспективным направлением является строительство космических телескопов. Они дают самую четкую картинку с максимальным разрешением. Все это было бы невозможно, если бы в далеком 17-м веке не была создана подзорная труба.

Базовые знания о телескопах и их разновидности

Предлагаем Вашему вниманию краткое руководство, которое может помочь разобраться во всех типах моделей телескопов, доступных на сегодняшний день. Эти основы помогут Вам не только получить базовые знания о телескопах, но определится с тем, какой именно телескоп и с какой целью Вы хотите приобрести.

Цена на телескопы может быть абсолютно разной. Как правило, цены на доступные телескопы начинаются от 12 000 рублей или больше, хотя есть и очень простые модели, которые можно приобрести по цене ниже 7500 руб. Этот обзор будет посвящен именно относительно недорогим телескопам, поэтому начинающим астрономам будет особенно интересно ознакомиться с его содержанием.

Главное, что следует учесть при выборе телескопа, это наличие у него высококачественной оптики и устойчивого, плавно работающего крепления. Будь это большой телескоп или портативный маленький, прежде всего Вам нужно знать где и при каких условиях возможно его применение, и будете ли Вы использовать его на самом деле.

Диафрагма: наиболее важная особенность телескопа

Наиболее важной характеристикой телескопа является его диафрагма — диаметр его объектива или зеркала. Прежде всего, следует посмотреть на спецификации телескопа вблизи его фокусировочного узла, на передней части трубки или на коробке. Диаметр апертуры (D) будет выражаться либо в миллиметрах или (на импортных моделях) в дюймах (1 дюйм равен 25,4 мм). Желательно, чтобы телескоп имел диафрагму не менее 70 мм (2,8 дюйма), а лучше даже больше.

Большая диафрагма позволяет увидеть слабо различимые объекты и рассмотреть детали. Но хороший небольшой телескоп тоже может показать Вам очень многое — особенно, если Вы живете далеко от городских огней. Например, можно легко рассмотреть десятки галактик за пределами нашей галактики Млечного Пути через телескопы с диафрагмой всего лишь 80 мм (3.1 дюймов), но для этого нужно находиться в темноте, в отдалении от электрического освещения. Ведь для того, чтобы увидеть те же самые объекты в каком-нибудь городском дворе, потребуется телескоп с диафрагмой не менее 152 или даже 203 мм, как на изображении:

Впрочем, независимо от того, из какой точки Вы ведете наблюдение за небом, телескопы с достаточно высоким значением диафрагмы позволят разглядеть все намного лучше и четче.

Типы телескопов

При выборе телескопа Вам придется столкнуться с нелегким выбором. Дело в том, что существует три основных вида телескопов:

Рефракторы (линзовые) имеют объектив в передней части трубки – наиболее распространенный вид телескопов. Несмотря на низкие эксплуатационные расходы, они имеют достаточно высокую стоимость, которая значительно увеличивается пропорционально максимальному значению диафрагмы.

Рефлекторы (зеркальные) собирают свет с помощью зеркала в задней части основной трубы. Данный тип телескопов, как правило, наименее дорогой, но у него есть одна особенность – он требует периодической коррекции оптического выпрямления .

Составные (или зеркально-линзовые) телескопы, которые сочетают в себе технологию двух предыдущих, сделаны на основе комбинации линз и зеркал. Такие телескопы обычно имеют компактные трубы и относительно легкий вес. Однако, этот тип телескопов самый дорогостоящий. Существует две наиболее популярные конструкции составных телескопов: Шмидт-Кассегрена и Максутова-Кассегрена .

Степень фокусировки телескопа является ключом к определению такого понятия как “мощность” телескопа. Это фокусное расстояние объектива, разделенное на диаметр окуляра. Например, если телескоп имеет фокусное расстояние 500 мм и 25-мм окуляр, увеличение составляет 500/25, или в 20 раз. Большинство типов телескопов поставляется с одним или двумя окулярами, изменить степень увеличения можно путем смены окуляров с разными фокусными расстояниями.

Монтировка: наиболее недооцененный актив телескопа

После приобретения телескопа Вам будет необходимо установить его на крепкую опору. Обычно телескопы продают в комплекте с удобно упакованными треножниками и креплениями. Однако у телескопов меньших размеров часто просто есть монтажный блок, который позволяет прикрепить его к стандартному фото-штативу с одним винтом.

Внимание : Штатив, достаточно хороший для снимков вашей семьи не всегда может быть достаточно устойчивым для астрономии! Крепления, разработанные специально для телескопов, обычно воздерживаются от одно шнековых блоков крепления в пользу более крупных, более надежных колец или пластин.

Стандартные крепления позволяют осуществлять сферическое вращение телескопа влево и вправо, вверх и вниз, подобно тому, как это происходит на фото-штативах. Такие механизмы известны как альт — азимутальные (или просто Alt-AZ) крепления.

Более сложный механизм, предназначенный для отслеживания движения звезд, который поворачивается только по одной оси, называется экваториальная монтировка. Такие крепления, как правило, больше и тяжелее, чем альт — азимутальные конструкции. Чтобы использовать такой штатив правильно, Вам будет необходимо откалибровать его по Полярной звезде.

Современные и дорогостоящие типы монтировок оснащены небольшими двигателями, которые позволяют отслеживать небосклон при помощи пульта управления. Самые продвинутые модели этого типа, который также называют «Go To», имеют небольшой компьютер, который позволяет манипулировать телескопом. Так, после ввода текущей даты, времени и местоположения, телескоп не только сможет обозначить себя относительно небесных объектов, но и сделает цифровую индексацию оных, предоставив краткое описание. При должной настройке, пользование таким телескопом и монтировкой превратит Ваше наблюдение за небом в увлекательную экскурсию с обзором лучших небесных экспонатов. Минусом такого устройства может служить лишь сложный процесс калибровки, и достаточно высокая цена.

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?

1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

Полномасштабная модель космического телескопа Джеймса Уэбба в Остине

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Испытания солнцезащитного экрана

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

Исследование зеркал

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

Очистка зеркала сухим льдом из двуокиси углерода

14. Камера A - это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

Транспортировка телескопа в Хьюстон

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

Телескоп «Джеймс Уэбб» внутри камеры А