Найти значение функции точке экстремума. Возрастание, убывание и экстремумы функции

Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения y"= (7x^2-56x+56)"e^x\,+ (7x^2-56x+56)\left(e^x\right)"= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y"=0;

7x(x-6)e^x=0,

x_1=0, x_2=6.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.

Ответ

Условие

Найдите наибольшее значение функции y=12x-12tg x-18 на отрезке \left.

Показать решение

Решение

y"= (12x)"-12(tg x)"-(18)"= 12-\frac{12}{\cos ^2x}= \frac{12\cos ^2x-12}{\cos ^2x}\leqslant0. Значит, исходная функция является невозрастающей на рассматриваемом промежутке и принимает наибольшее значение на левом конце отрезка, то есть при x=0. Наибольшее значение равно y(0)= 12\cdot 0-12 tg (0)-18= -18.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку минимума функции y=(x+8)^2e^{x+52}.

Показать решение

Решение

Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y"(x)= \left((x+8)^2\right)"e^{x+52}+(x+8)^2\left(e^{x+52}\right)"= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.

Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x . y"=0 при x=-8, x=-10.

Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.

Показать решение

Решение

ОДЗ: x \geqslant 0. Найдём производную исходной функции:

y"=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.

Вычислим нули производной:

8-\sqrt x=0;

\sqrt x=8;

x=64.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].

Показать решение

Решение

ОДЗ: x>0.

Найдём производную исходной функции:

y"(x)= 10x-12+\frac{2}{x}= \frac{10x^2-12x+2}{x}.

Определим нули производной: y"(x)=0;

\frac{10x^2-12x+2}{x}=0,

5x^2-6x+1=0,

x_{1,2}= \frac{3\pm\sqrt{3^2-5\cdot1}}{5}= \frac{3\pm2}{5},

x_1=\frac15\notin\left[\frac35; \frac75\right],

x_2=1\in\left[\frac35; \frac75\right].

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Из рисунка видно, что на отрезке \left[\frac35; 1\right] исходная функция убывает, а на отрезке \left возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right] достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наибольшее значение функции y=(x+4)^2(x+1)+19 на отрезке [-5; -3].

Показать решение

Решение

Найдём производную исходной функции, используя формулу производной произведения.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Пример.

Найти экстремумы функции .

Решение.

Начнем с области определения:

Продифференцируем исходную функцию:

x=1 , то есть, это точка возможного экстремума. Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x=1 - точка максимума. Тогда - максимум функции.

Графическая иллюстрация.

Ответ:

Третье достаточное условие экстремума функции.

Пусть функция y=f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .

Пример.

Найти точки экстремума функции .

Решение.

Исходная функция является целой рациональной, ее областью определения является все множество действительных чисел.

Продифференцируем функцию:

Производная обращается в ноль при , следовательно, это точки возможного экстремума. Воспользуемся третьим достаточным условием экстремума.

Находим вторую производную и вычисляем ее значение в точках возможного экстремума (промежуточные вычисления опустим):

Следовательно, - точка максимума (для третьего достаточного признака экстремума имеем n=1 и ).

Для выяснения характера точек находим третью производную и вычисляем ее значение в этих точках:

Следовательно, - точка перегиба функции (n=2 и ).

Осталось разобраться с точкой . Находим четвертую производную и вычисляем ее значение в этой точке:

Следовательно, - точка минимума функции.

Графическая иллюстрация.

Ответ:

Точка максимума, - точка минимума функции.

10. Экстремумы функции Определение экстремума

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x)  0

(f " (x)  0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 (<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Это довольно-таки занятный раздел математики, с которым сталкиваются абсолютно все ученики выпускных классов и студенты. Тем не менее далеко не каждому нравится матан. Некоторые не могут понять даже элементарных вещей наподобие, казалось бы, стандартного исследования функции. Данная статья призвана исправить подобную оплошность. Хотите поподробнее узнать об анализе функции? Желаете узнать, что такое точки экстремума и как их найти? Тогда данная статья для вас.

Исследование графика функции

Для начала стоит понять, зачем вообще необходимо анализировать график. Существуют простые функции, начертить которые не составит труда. Ярким примером подобной функции может служить парабола. Начертить ее график не составит труда. Все что необходимо, так это с помощью простого преобразования найти числа, при которых функция принимает значение 0. И в принципе это все что знать для того, чтобы начертить график параболы.

Но что делать, если функция, график которой нам нужно начертить, намного сложнее? Поскольку свойства сложных функций довольно-таки неочевидны, необходимо проводить целый анализ. Только после этого можно изобразить функцию графически. Как же это сделать? Ответ на этот вопрос вы сможете найти в данной статье.

План анализа функции

Первое, что необходимо сделать, так это провести поверхностное исследование функции, в ходе которого мы найдем область определения. Итак, начнем по порядку. Область определения - это совокупность тех значений, которыми функция задается. Проще говоря, это те числа, которые можно использовать в функции вместо х. Для того чтобы определить область определения, необходимо просто взглянуть на запись. К примеру, очевидно, что у функции у (х) = х 3 + х 2 - х + 43 область определения - множество действительных чисел. Ну а с функцией наподобие (х 2 - 2х)/х все немного иначе. Поскольку число в знаменателе не должно равняться 0, то областью определения данной функции будут все действительные числа, помимо нуля.

Далее необходимо найти так называемые нули функции. Это те значения аргумента, при которых вся функция принимает значения ноль. Для этого необходимо приравнять функцию к нулю, подробно ее рассмотреть и совершить некоторые преобразования. Возьмём уже знакомую нам функцию у(х) = (х 2 - 2х)/х. Из школьного курса мы знаем, что дробь равна 0 тогда, когда числитель равен нулю. Поэтому знаменатель мы отбрасываем и начинаем работать с числителем, приравнивая его к нулю. Получаем х 2 - 2х = 0 и выносим х за скобочки. Отсюда х (х - 2) = 0. В итоге получаем, что наша функция равна нулю тогда, когда х равняется 0 или же 2.

Во время исследования графика функции многие сталкиваются с проблемой в виде точек экстремума. И это странно. Ведь экстремумы - это довольно-таки простая тема. Не верите? Убедитесь сами, прочитав данную часть статьи, в которой мы поговорим о точках минимума и максимума.

Для начала стоит разобраться в том, что собой представляет экстремум. Экстремум - это предельное значений, которое достигает функция на графике. Отсюда получается, что существует два крайних значения - максимум и минимум. Для наглядности можно посмотреть на картинку, что расположена выше. На исследованной области точка -1 является максимумом функции у (х) = х 5 - 5х, а точка 1, соответственно, минимумом.

Также не стоит путать между собой понятия. Точки экстремума функции - это те аргументы, при которых заданная функция приобретает крайние значения. В свою очередь, экстремумом называют значение минимумов и максимумов функции. К примеру, вновь рассмотрим рисунок выше. -1 и 1 - это точки экстремума функции, а 4 и -4 - это сами экстремумы.

Нахождение точек экстремума

Но как все-таки найти точки экстремума функции? Все довольно-таки просто. Первое, что необходимо сделать - найти производную уравнения. Допустим, мы получили задание: "Найдите точки экстремума функции y (x), x - аргумент. Для наглядности возьмем функцию у (х) = х 3 + 2х 2 + х + 54. Проведем дифференцирование и получим следующее уравнение: 3х 2 + 4х + 1. В итоге мы получили стандартное квадратное уравнение. Все, что необходимо сделать дальше - приравнять его к нулю и найти корни. Поскольку дискриминант больше нуля (D = 16 - 12 = 4), данное уравнение определяется двумя корнями. Находим их и получаем два значения: 1/3 и -1. Это и будут точки экстремума функции. Однако как все-таки определить, кто есть кто? Какая точка является максимумом, а какая минимумом? Для этого нужно взять соседнюю точку и узнать ее значение. К примеру, возьмем число -2, которое находится слева по координатной прямой от -1. Подставляем это значение в наше уравнение у(-2) = 12 - 8 + 1 = 5. В итоге мы получили положительное число. Это значит, что на промежутке от 1/3 до -1 функция возрастает. Это, в свою очередь, обозначает, что на промежутках от минус бесконечности до 1/3 и от -1 до плюс бесконечности функция убывает. Таким образом, можно сделать вывод, что число 1/3 - точка минимума функции на исследованном промежутке, а -1 - точка максимума.

Также стоит отметить, что на ЕГЭ требуют не просто найти точки экстремума, Но и провести с ними какую-то операцию (прибавить, умножить и т.д.). Именно по этой причине стоит обратить особое внимание на условия задачи. Ведь из-за невнимательности можно потерять баллы.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ - точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином - точки экстремума.

Если $(x_0,y_0)$ - точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином - экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. Составить и решить систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac{\partial^2z}{\partial x^2}$, $\frac{\partial^2z}{\partial x\partial y}$, $\frac{\partial^2z}{\partial y^2}$ и вычислить значение $\Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} > 0$ (или $\frac{\partial^2z}{\partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} < 0$ (или $\frac{\partial^2z}{\partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
    3. Если $\Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
    4. Если $\Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показать\скрыть

Если $\Delta > 0$, то $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2 > 0$. А отсюда следует, что $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > \left(\frac{\partial^2z}{\partial x\partial y} \right)^2 ≥ 0$. Т.е. $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac{\partial^2z}{\partial x^2} > 0$, то и $\frac{\partial^2z}{\partial y^2} > 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac{\partial^2z}{\partial x^2}$ и $\frac{\partial^2z}{\partial y^2}$ совпадают.

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

$$ \frac{\partial z}{\partial x}=8x-6y-34; \frac{\partial z}{\partial y}=-6x+10y+42. $$

$$ \left \{ \begin{aligned} & 8x-6y-34=0;\\ & -6x+10y+42=0. \end{aligned} \right. $$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$ \left \{ \begin{aligned} & 4x-3y=17;\\ & -3x+5y=-21. \end{aligned} \right. $$

Мы получили систему линейных алгебраических уравнений . Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ \begin{aligned} & \Delta=\left| \begin{array} {cc} 4 & -3\\ -3 & 5 \end{array}\right|=4\cdot 5-(-3)\cdot (-3)=20-9=11;\\ & \Delta_x=\left| \begin{array} {cc} 17 & -3\\ -21 & 5 \end{array}\right|=17\cdot 5-(-3)\cdot (-21)=85-63=22;\\ & \Delta_y=\left| \begin{array} {cc} 4 & 17\\ -3 & -21 \end{array}\right|=4\cdot (-21)-17\cdot (-3)=-84+51=-33.\end{aligned} \\ x=\frac{\Delta_{x}}{\Delta}=\frac{22}{11}=2; \; y=\frac{\Delta_{y}}{\Delta}=\frac{-33}{11}=-3. $$

Значения $x=2$, $y=-3$ - это координаты стационарной точки $(2;-3)$.

$$ \frac{\partial^2 z}{\partial x^2}=8; \frac{\partial^2 z}{\partial y^2}=10; \frac{\partial^2 z}{\partial x \partial y}=-6. $$

Вычислим значение $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 8\cdot 10-(-6)^2=80-36=44. $$

Так как $\Delta > 0$ и $\frac{\partial^2 z}{\partial x^2} > 0$, то согласно точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$ z_{min}=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

Ответ : $(2;-3)$ - точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Будем следовать указанному выше . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=3x^2+3y^2-15; \frac{\partial z}{\partial y}=6xy-12. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 3x^2+3y^2-15=0;\\ & 6xy-12=0. \end{aligned} \right. $$

Сократим первое уравнение на 3, а второе - на 6.

$$ \left \{ \begin{aligned} & x^2+y^2-5=0;\\ & xy-2=0. \end{aligned} \right. $$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac{2}{x}$. Подставляя $y=\frac{2}{x}$ в первое уравнение, будем иметь:

$$ x^2+\left(\frac{2}{x} \right)^2-5=0;\\ x^2+\frac{4}{x^2}-5=0;\\ x^4-5x^2+4=0. $$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$ t^2-5t+4=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 1 \cdot 4=9;\\ & t_1=\frac{-(-5)-\sqrt{9}}{2}=\frac{5-3}{2}=1;\\ & t_2=\frac{-(-5)+\sqrt{9}}{2}=\frac{5+3}{2}=4.\end{aligned} $$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac{2}{x}$, получим:

\begin{aligned} & y_1=\frac{2}{x_1}=\frac{2}{1}=2;\\ & y_2=\frac{2}{x_2}=\frac{2}{-1}=-2;\\ & y_3=\frac{2}{x_3}=\frac{2}{2}=1;\\ & y_4=\frac{2}{x_4}=\frac{2}{-2}=-1. \end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=6x; \frac{\partial^2 z}{\partial y^2}=6x; \frac{\partial^2 z}{\partial x \partial y}=6y. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 6x\cdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем: $\Delta(M_1)=36(1^2-2^2)=-108$. Так как $\Delta(M_1) < 0$, то согласно в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем: $\Delta(M_2)=36((-1)^2-(-2)^2)=-108$. Так как $\Delta(M_2) < 0$, то согласно в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$ \Delta(M_3)=36(2^2-1^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=6\cdot 2=12. $$

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$ \Delta(M_4)=36((-2)^2-(-1)^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4}=6\cdot (-2)=-12. $$

Так как $\Delta(M_4) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4} < 0$, то согласно $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$ z_{max}=z(-2;-1)=(-2)^3+3\cdot (-2)\cdot (-1)^2-15\cdot (-2)-12\cdot (-1)+1=29. $$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ :

  • $(2;1)$ - точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ - точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $\Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $\Delta=36\cdot(2^2-1^2)$. Здесь очевидно, что $\Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, - там требуют довести вычисления до числа:)

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Будем следовать . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=4x^3-4x+4y; \frac{\partial z}{\partial y}=4y^3+4x-4y. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 4x^3-4x+4y=0;\\ & 4y^3+4x-4y=0. \end{aligned} \right. $$

Сократим оба уравнения на $4$:

$$ \left \{ \begin{aligned} & x^3-x+y=0;\\ & y^3+x-y=0. \end{aligned} \right. $$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$ y^3+x-y+(x^3-x+y)=0;\\ y^3+x^3=0; y^3=-x^3; y=-x. $$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$ x^3-x-x=0;\\ x^3-2x=0;\\ x(x^2-2)=0. $$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt{2}$ или $x=\sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt{2}$, $x_3=\sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt{2}$, $y_3=-x_3=-\sqrt{2}$.

Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt{2},\sqrt{2})$, $M_3(\sqrt{2},-\sqrt{2})$.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=12x^2-4; \frac{\partial^2 z}{\partial y^2}=12y^2-4; \frac{\partial^2 z}{\partial x \partial y}=4. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= (12x^2-4)(12y^2-4)-4^2=\\ =4(3x^2-1)\cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16\cdot((3x^2-1)(3y^2-1)-1). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем: $\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0$. Так как $\Delta(M_1) = 0$, то согласно требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-\sqrt{2},\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_2)=16\cdot((3\cdot (-\sqrt{2})^2-1)(3\cdot (\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2}=12\cdot (-\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_2) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2} > 0$, то согласно $M_2(-\sqrt{2},\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$ z_{min}=z(-\sqrt{2},\sqrt{2})=(-\sqrt{2})^4+(\sqrt{2})^4-2(-\sqrt{2})^2+4\cdot (-\sqrt{2})\sqrt{2}-2(\sqrt{2})^2+3=-5. $$

Аналогично предыдущему пункту исследуем точку $M_3(\sqrt{2},-\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_3)=16\cdot((3\cdot (\sqrt{2})^2-1)(3\cdot (-\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=12\cdot (\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(\sqrt{2},-\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(\sqrt{2},-\sqrt{2})=(\sqrt{2})^4+(-\sqrt{2})^4-2(\sqrt{2})^2+4\cdot \sqrt{2}(-\sqrt{2})-2(-\sqrt{2})^2+3=-5. $$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно требуется дополнительное исследование. Под этой уклончивой фразой подразумевается "делайте, что хотите" :). Общего способа разрешения таких ситуаций нет, - и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ - точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,0)=x^4+0^4-2x^2+4x\cdot 0-2\cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3. $$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ - точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ : $(-\sqrt{2},\sqrt{2})$, $(\sqrt{2},-\sqrt{2})$ - точки минимума функции $z$. В обеих точках $z_{min}=-5$.


Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .