Среднее арифметическое числового ряда. Статистические характеристики Среднее арифметическое ряда Размах ряда Мода ряда Медиана ряда

При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определённый день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные: 23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25. При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определённый день время (в минутах), затраченное на выполнение домашнего задания по алгебре. Получили такие данные: 23, 18, 25, 20, 25, 25, 32, 37, 34, 26, 34, 25.


Среднее арифметическое ряда. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.():12=27


Размах ряда. Размахом ряда называется разность между наибольшим и наименьшим из этих чисел. Размахом ряда называется разность между наибольшим и наименьшим из этих чисел. Наибольший расход времени равен 37 мин, а наименьший – 18 мин. Найдём размах ряда: 37 – 18 = 19(мин)


Мода ряда. Модой ряда чисел называется число, которое встречается в данном ряду чаще других. Модой ряда чисел называется число, которое встречается в данном ряду чаще других. Модой нашего ряда является число – 25. Модой нашего ряда является число – 25. Ряд чисел может иметь более одной моды, а может не иметь. 1) 47,46,50,47,52,49,45,43,53,53,47,52 – две моды 47 и 52. 2) 69,68,66,70,67,71,74,63,73,72 – моды нет.


Среднее арифметическое, размах и мода, находят применение в статистике – науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе. Среднее арифметическое, размах и мода, находят применение в статистике – науке, которая занимается получением, обработкой и анализом количественных данных о разнообразных массовых явлениях, происходящих в природе и обществе. Статистика изучает численность отдельных групп населения страны и её регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т. п. Статистика изучает численность отдельных групп населения страны и её регионов, производство и потребление разнообразных видов продукции, перевозку грузов и пассажиров различными видами транспорта, природные ресурсы и т. п.


1. Найдите среднее арифметическое и размах ряда чисел: а) 24,22,27,20,16,37; б)30,5,23,5,28, Найдите среднее арифметическое, размах и моду ряда чисел: а)32,26,18,26,15,21,26; б)-21,-33,-35,-19,-20,-22; б)-21,-33,-35,-19,-20,-22; в) 61,64,64,83,61,71,70; в) 61,64,64,83,61,71,70; г) -4,-6, 0, 4, 0, 6, 8, -12. г) -4,-6, 0, 4, 0, 6, 8, В ряду чисел 3, 8, 15, 30, __, 24 пропущено одно число, Найдите его, если: а) среднее арифметическое ряда равно 18; а) среднее арифметическое ряда равно 18; б) размах ряда равен 40; б) размах ряда равен 40; в) мода ряда равна 24. в) мода ряда равна 24.


4. В аттестате о среднем образовании у четырёх друзей – выпускников школы – оказались следующие оценки: Ильин: 4,4,5,5,4,4,4,5,5,5,4,4,5,4,4; Ильин: 4,4,5,5,4,4,4,5,5,5,4,4,5,4,4; Семёнов: 3,4,3,3,3,3,4,3,3,3,3,4,4,5,4; Семёнов: 3,4,3,3,3,3,4,3,3,3,3,4,4,5,4; Попов: 5,5,5,5,5,4,4,5,5,5,5,5,4,4,4; Попов: 5,5,5,5,5,4,4,5,5,5,5,5,4,4,4; Романов: 3,3,4,4,4,4,4,3,4,4,4,5,3,4,4. Романов: 3,3,4,4,4,4,4,3,4,4,4,5,3,4,4. С каким средним баллом окончил школу каждый из этих выпускников? Укажите наиболее типичную для каждого из них оценку в аттестате. Какие статистические характеристики вы использовали при ответе? С каким средним баллом окончил школу каждый из этих выпускников? Укажите наиболее типичную для каждого из них оценку в аттестате. Какие статистические характеристики вы использовали при ответе?


Самостоятельная работа Вариант 1. Вариант Дан ряд чисел: 35, 44, 37, 31, 41, 40, 31, 29. Найдите среднее арифметическое, размах и моду рада. 2. В ряду чисел 4, 9, 16, 31, _, 25 4, 9, 16, 31, _, 25 пропущено одно число. пропущено одно число. Найдите его, если: Найдите его, если: а) среднее арифметичес- а) среднее арифметичес- кое равно 19; кое равно 19; б) размах ряда – 41. б) размах ряда – 41. Вариант Дан ряд чисел: 38, 42, 36, 45, 48, 45,45, 42. Найдите среднее арифметическое, размах и моду рада. 2. В ряду чисел 5, 10, 17, 32, _, 26 пропущено одно число. Найдите его, если: а) среднее арифметичес- кое равно 19; б) размах ряда – 41.


Медианой упорядоченного ряда чисел с нечётным числом чисел называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом чисел называется среднее арифметическое двух чисел, записанных посередине. Медианой упорядоченного ряда чисел с нечётным числом чисел называется число, записанное посередине, а медианой упорядоченного ряда чисел с чётным числом чисел называется среднее арифметическое двух чисел, записанных посередине. В таблице показан расход электроэнергии в январе жильцами девяти квартир: В таблице показан расход электроэнергии в январе жильцами девяти квартир: Номерквартиры Расходэлектро-энергии


Составим упорядоченный ряд: 64, 72, 72, 75, 78, 82, 85, 91,93. 64, 72, 72, 75, 78, 82, 85, 91, – медиана данного ряда. 78 – медиана данного ряда. Дан упорядоченный ряд: Дан упорядоченный ряд: 64, 72, 72, 75, 78, 82, 85, 88, 91, 93. ():2 = 80 – медиана. ():2 = 80 – медиана.


1. Найдите медиану ряда чисел: а) 30, 32, 37, 40, 41, 42, 45, 49, 52; а) 30, 32, 37, 40, 41, 42, 45, 49, 52; б) 102, 104, 205, 207, 327, 408, 417; б) 102, 104, 205, 207, 327, 408, 417; в) 16, 18, 20, 22, 24, 26; в) 16, 18, 20, 22, 24, 26; г) 1,2, 1,4, 2,2, 2,6, 3,2, 3,8, 4,4, 5,6. г) 1,2, 1,4, 2,2, 2,6, 3,2, 3,8, 4,4, 5,6. 2. Найдите среднее арифметическое и медиану ряда чисел: а) 27, 29, 23, 31,21,34; а) 27, 29, 23, 31,21,34; б) 56, 58, 64, 66, 62, 74; б) 56, 58, 64, 66, 62, 74; в) 3,8, 7,2, 6,4, 6,8, 7,2; в) 3,8, 7,2, 6,4, 6,8, 7,2; г) 21,6, 37,3, 16,4, 12, 6. г) 21,6, 37,3, 16,4, 12, 6.


3. В таблице показано число посетителей выставки в разные дни недели: Найдите медиану указанного ряда данных. В какие дни недели число посетителей выставки было больше медианы? Днинедели Пн Пн Вт Вт Ср Ср Чт Чт Пт Пт Сб Сб Вс Вс Число посетите лей


4.Ниже указана среднесуточная переработка сахара (в тыс.ц) заводами сахарной промышленности некоторого региона: (в тыс.ц) заводами сахарной промышленности некоторого региона: 12,2, 13,2, 13,7, 18,0, 18,6, 12,2, 18,5, 12,4, 12,2, 13,2, 13,7, 18,0, 18,6, 12,2, 18,5, 12,4, 14, 2, 17,8. 14, 2, 17,8. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. 5. В организации вели ежедневный учёт поступивших в течение месяца писем. В результате получили такой ряд данных: 39, 43, 40, 0, 56, 38, 24, 21, 35, 38, 0, 58, 31, 49, 38, 25, 34, 0, 52, 40, 42, 40, 39, 54, 0, 64, 44, 50, 38, 37, 43, 40, 0, 56, 38, 24, 21, 35, 38, 0, 58, 31, 49, 38, 25, 34, 0, 52, 40, 42, 40, 39, 54, 0, 64, 44, 50, 38, 37, 32. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану. Для представленного ряда найдите среднее арифметическое, моду, размах и медиану.


Домашнее задание. На соревнованиях по фигурному катанию выступление спортсмена было оценено следующими баллами: На соревнованиях по фигурному катанию выступление спортсмена было оценено следующими баллами: 5,2; 5,4; 5,5; 5,4; 5,1; 5,1; 5,4; 5,5; 5,3. 5,2; 5,4; 5,5; 5,4; 5,1; 5,1; 5,4; 5,5; 5,3. Для полученного ряда чисел найдите среднее арифметическое, размах и моду. Для полученного ряда чисел найдите среднее арифметическое, размах и моду.



Начальный уровень

Статистика. Основные понятия и определения (2019)

Людмила Прокофьевна Калугина (или просто “Мымра”) в замечательном фильме «Служебный роман» поучала Новосельцева: «Статистика - это наука, она не терпит приблизительности». Чтобы не попасть под горячую руку строгой начальнице Калугиной (а заодно и запросто решать задания из ЕГЭ и ГИА с элементами статистики), постараемся разобраться с некоторыми понятиями статистики, которые могут пригодиться не только в тернистом пути покорения экзамена по ЕГЭ, но и просто в повседневной жизни.

Так что же такое Статистика и зачем она нужна? Слово «статистика» происходит от латинского слова «status» (статус), что означает «состояние и положение дел/вещей». Статистика занимается изучением количественной стороны массовых общественных явлений и процессов в числовой форме, выявляя особые закономерности. На сегодняшний день статистика применяется практически во всех сферах общественной жизни, начиная от моды, кулинарии, садоводства и заканчивая астрономией, экономикой, медициной.

Перво-наперво, при знакомстве со статистикой необходимо изучить основные статистические характеристики, применяемые для анализа данных. Ну вот, с этого и начнем!

Статистические характеристики

К основным статистическим характеристикам выборки данных (какая еще такая «выборка»!? Не пугайся, все под контролем, это непонятное слово лишь для запугивания, на самом деле, под словом «выборка» подразумевается просто данные, которые ты собираешься исследовать) относятся:

  1. объем выборки,
  2. размах выборки,
  3. среднее арифметическое,
  4. мода,
  5. медиана,
  6. частота,
  7. относительная частота.

Стоп-стоп-стоп! Сколько новых слов! Давай обо всем по порядку.

Объем и Размах

Например, в таблице ниже приведен рост игроков сборной по футболу:

Данная выборка представлена элементами. Таким образом, объем выборки равен.

Размах представленной выборки составляет см.

Среднее арифметическое

Не очень понятно? Давай смотреть на наш пример .

Определите средний рост игроков.

Ну что, приступим? Мы уже разбирались, что; .

Можем сразу смело все подставлять в нашу формулу:

Таким образом, средний рост игрока сборной составляет см.

Ну или вот такой пример:

Ученикам 9 класса на неделю было задано решить как можно больше примеров из задачника. Количество примеров, решенных учениками за неделю, приведены ниже:

Найдите среднее количество решенных задач.

Итак, в таблице нам представлены данные по ученикам. Таким образом, . Ну что ж, найдем для начала сумму (общее количество) всех решенных задач двадцатью учениками:

Теперь можем смело приступать к расчету среднего арифметического решенных задач, зная, что, а:

Таким образом, в среднем ученики 9 класса решили по задач.

Вот еще один пример для закрепления.

Пример.

На рынке помидоры реализуются продавцами, причем цены за кг распределены следующим образом (в руб.): . Какова средняя цена килограмма помидоров на рынке?

Решение.

Итак, чему в данном примере равно? Все верно: семь продавцов предлагают семь цен, значит, ! . Ну вот, со всеми составляющими разобрались, теперь можем приступить к расчету средней цены:

Ну что, разобрался? Тогда посчитай самостоятельно среднее арифметическое в следующих выборках:

Ответы: .

Мода и медиана

Обратимся снова к нашему примеру со сборной по футболу:

Чему в данном примере равна мода? Какое число наиболее часто встречается в этой выборке? Все верно, это число, так как два игрока имеют рост см; рост же остальных игроков не повторяется. Тут все должно быть ясно и понятно, да и слово знакомое, правда?

Перейдем к медиане, ты ее должен знать из курса геометрии. Но мне не сложно напомнить, что в геометрии медиана (в переводе с латинского- «средняя») - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны. Ключевое слово СЕРЕДИНА. Если ты знал это определение, то тебе легко будет запомнить, что такое медиана в статистике.

Ну что, вернемся к нашей выборке футболистов?

Ты заметил в определении медианы важный момент, который нам еще здесь не встречался? Конечно, «если этот ряд упорядочить»! Наведем порядок в ряду? Для того, чтобы в ряду чисел был порядок, можно расположить значения роста футболистов как в порядке убывания, так и в порядке возрастания. Мне удобней выстроить этот ряд в порядке возрастания (от самого маленького к самому большому). Вот, что у меня получилось:

Так, ряд упорядочили, какой еще есть важный момент в определении медианы? Правильно, четное и нечетное количество членов в выборке. Заметил, что для четного и нечетного количества даже определения отличаются? Да, ты прав, не заметить - сложно. А раз так, то нам надо определиться, четное у нас количество игроков в нашей выборке или нечетное? Все верно - игроков, значит, количество нечетное! Теперь можем применять к нашей выборке менее заковыристое определение медианы для нечетного количества членов в выборке. Ищем число, которое оказалось посередине в нашем упорядоченном ряду:

Ну вот, чисел у нас, значит, по краям остается по пять чисел, а рост см будет медианой в нашей выборке. Не так уж и сложно, правда?

А теперь разберем пример с нашими отчаянными ребятами из 9 класса, которые решали примеры в течение недели:

Готов искать в этом ряду моду и медиану?

Для начала, упорядочим этот ряд чисел (расположим от самого маленького числа к самому большому). Получился вот такой вот ряд:

Теперь можно смело определить моду в данной выборке. Какое число встречается чаще других? Все верно, ! Таким образом, мода в данной выборке равна.

Моду нашли, теперь можем приступать к нахождению медианы. Но прежде, ответь мне: каков объем рассматриваемой выборки? Посчитал? Все верно, объем выборки равен. А - это четное число. Таким образом, применяем определение медианы для ряда чисел с четным количеством элементов. То есть нам надо в нашем упорядоченном ряду найти среднее арифметическое двух чисел, записанных посередине. Какие два числа располагаются посередине? Все верно, и!

Таким образом, медианой этого ряда будет среднее арифметическое чисел и:

- медиана рассматриваемой выборки.

Частота и относительная частота

То есть частота определяет то, как часто повторяется та или иная величина в выборке.

Разберемся на нашем примере с футболистами. Перед нами вот такой вот упорядоченный ряд:

Частота - это число повторений какой-либо величины параметра. В нашем случае, это можно считать вот так. Сколько игроков имеет рост? Все верно, один игрок. Таким образом, частота встречи игрока с ростом в нашей выборке равна. Сколько игроков имеет рост? Да, опять же один игрок. Частота встречи игрока с ростом в нашей выборке равна. Задавая такие вопросы и отвечая на них, можно составить вот такую табличку:

Ну вот, все довольно просто. Помни, что сумма частот должна равняться количеству элементов в выборке (объему выборки). То есть в нашем примере:

Перейдем к следующей характеристике - относительная частота.

Обратимся опять к нашему примеру с футболистами. Частоты для каждого значения мы рассчитали, общее количество данных в ряду мы тоже знаем. Рассчитываем относительную частоту для каждого значения роста и получаем вот такую табличку:

А теперь сам составь таблицы частот и относительных частот для примера с 9-классниками, решающими задачи.

Графическое изображение данных

Очень часто для наглядности данные представляются в виде диаграмм/графиков. Остановимся на рассмотрении основных из них:

  1. столбчатая диаграмма,
  2. круговая диаграмма,
  3. гистограмма,
  4. полигон

Столбчатая диаграмма

Столбчатые диаграммы используют тогда, когда хотят продемонстрировать динамику изменения данных во времени или распределения данных, полученных в результате статистического исследования.

Например, у нас есть вот такие данные об оценках написанной контрольной работы в одном классе:

Количество получивших такую оценку - это у нас и есть частота . Зная это, мы можем составить вот такую вот табличку:

Теперь мы можем построить наглядные столбчатые графики на основе такого показателя как частота (на горизонтальной оси отражены оценки на вертикальной оси откладываем количество учеников, получивших соответствующие оценки):

Или же можем построить соответствующий столбчатый график на основе относительной частоты:

Рассмотрим пример по типу задания В3 из ЕГЭ.

Пример.

На диаграмме показано распределение добычи нефти в странах мира (в тоннах) за 2011 год. Среди стран первое место по добыче нефти занимала Саудовская Аравия, седьмое место - Объединенные Арабские Эмираты. Какое место занимали США?

Ответ: третье.

Круговая диаграмма

Для наглядного изображения соотношения между частями исследуемой выборки удобно использовать круговые диаграммы.

По нашей табличке с относительными частотами распределения оценок в классе мы можем построить круговую диаграмму, разбив круг на секторы, пропорциональные относительным частотам.

Круговая диаграмма сохраняет свою наглядность и выразительность только при небольшом числе частей совокупности. В нашем случае, таких частей четыре (в соответствии с возможными оценками), поэтому применение такого типа диаграммы достаточно эффективно.

Рассмотрим пример по типу задания 18 из ГИА.

Пример.

На диаграмме показано распределение расходов семьи во время отдыха на море. Определите, на что семья потратила больше всего?

Ответ: проживание.

Полигон

Динамику изменения статистических данных во времени часто изображают с помощью полигона. Для построения полигона отмечают в координатной плоскости точки, абсциссами которых служат моменты времени, а ординатами - соответствующие им статистические данные. Соединив последовательно эти точки отрезками, получают ломанную, которую называют полигоном.

Вот, к примеру нам даны среднемесячные температуры воздуха в Москве.

Сделаем приведенные данные более наглядными - построим полигон.

На горизонтальной оси отражены месяцы, на вертикальной - температура. Строим соответствующие точки и соединяем их. Вот, что получилось:

Согласись, сразу стало наглядней!

Полигон, используют также для наглядного изображения распределения данных, полученных в результате статистического исследования.

Вот построенный полигон на основе нашего примера с распределением оценок:

Рассмотрим типовое задание В3 из ЕГЭ.

Пример.

На рисунке жирными точками показана цена алюминия на момент закрытия биржевых торгов во все рабочие дни с по августа года. По горизонтали указываются числа месяца, по вертикали — цена тонны алюминия в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку, какого числа цена алюминия на момент закрытия торгов была наименьшей за данный период.

Ответ: .

Гистограмма

Интервальные ряды данных изображают с помощью гистограммы. Гистограмма представляет собой ступенчатую фигуру, составленную из сомкнутых прямоугольников. Основание каждого прямоугольника равно длине интервала, а высота - частоте или относительной частоте. Таким образом, в гистограмме, в отличие от обычной столбчатой диаграммы, основания прямоугольника выбираются не произвольно, а строго определены длиной интервала.

Вот, к примеру, у нас есть следующие данные о росте игроков, вызванных в сборную:

Итак, нам дана частота (количество игроков с соответствующим ростом). Мы можем дополнить табличку, рассчитав относительную частоту:

Ну вот, теперь можем строить гистограммы. Сначала построим на основании частоты. Вот, что получилось:

А теперь на основании данных об относительной частоте:

Пример.

На выставку по инновационным технологиям приехали представители компаний. На диаграмме показано распределение этих компаний по количеству персонала. По горизонтали представлено количество сотрудников в компании, по вертикали - количество компаний, имеющих данное число сотрудников.

Какой процент составляют компании с общим числом сотрудников больше человек?

Ответ: .

Краткие итоги

    Объем выборки - количество элементов в выборке.

    Размах выборки - разность между максимальным и минимальным значениями элементов выборки.

    Среднее арифметическое ряда чисел - это частное от деления суммы этих чисел на их количество (объем выборки).

    Мода ряда чисел - число, наиболее часто встречающееся в данном ряду.

    Медиана упорядоченного ряда чисел с нечетным числом членов - число, которое окажется посередине.

    Медиана упорядоченного ряда чисел с четным числом членов - среднее арифметическое двух чисел, записанных посередине.

    Частота - число повторений определенного значения параметра в выборке.

    Относительная частота

    Для наглядности удобно представлять данные в виде соответствующих диаграмм/графиков

  • ЭЛЕМЕНТЫ СТАТИСТИКИ. КОРОТКО О ГЛАВНОМ.

  • Статистическая выборка - выбранное из всего числа объектов конкретное число объектов для исследования.

    Объемом выборки - количество элементов, попавших в выборку.

    Размах выборки - разность между максимальным и минимальным значениями элементов выборки.

    Или, размах выборки

    Среднее арифметическое ряда чисел - это частное от деления суммы этих чисел на их количество

    Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду.

    Медианой ряда чисел с четным числом членов называется среднее арифметическое двух чисел, записанных посередине, если этот ряд упорядочить.

    Частота представляет собой число повторений, сколько раз за какой-то период происходило некоторое событие, проявлялось определенное свойство объекта либо наблюдаемый параметр достигал данной величины.

    Относительная частота - это отношение частоты к общему числу данных в ряду.

Пусть Х 1 , Х 2 ... X n - выборка независимых случайных величин.

Упорядочим эти величины по возрастанию, иными словами, построим вариационный ряд:

Х (1) < Х (2) < ... < X (n) , (*)

где Х (1) = min (Х 1 , Х 2 ... X n),

Х (n) = max (Х 1 , Х 2 ... X n).

Элементы вариационного ряда (*) называются порядковыми статистиками.

Величины d (i) = X (i+1) - X (i) называются спейсингами или расстояниями между порядковыми статистиками.

Размахом выборки называется величина

R = X (n) - X (1)

Иными словами, размах это расстояние между максимальным и минимальным членом вариационного ряда.

Выборочное среднее равно: = (Х 1 + Х 2 + ... + X n) / n

Среднее арифметическое

Вероятно, большинство из вас использовало такую важную описательную статистику, как среднее .

Среднее - очень информативная мера "центрального положения" наблюдаемой переменной, особенно если сообщается ее доверительный интервал. Исследователю нужны такие статистики, которые позволяют сделать вывод относительно популяции в целом. Одной из таких статистик является среднее.

Доверительный интервал для среднего представляет интервал значений вокруг оценки, где с данным уровнем доверия, находится "истинное" (неизвестное) среднее популяции.

Например, если среднее выборки равно 23, а нижняя и верхняя границы доверительного интервала с уровнем p =.95 равны 19 и 27 соответственно, то можно заключить, что с вероятностью 95% интервал с границами 19 и 27 накрывает среднее популяции.

Если вы установите больший уровень доверия, то интервал станет шире, поэтому возрастает вероятность, с которой он "накрывает" неизвестное среднее популяции, и наоборот.

Хорошо известно, например, что чем "неопределенней" прогноз погоды (т.е. шире доверительный интервал), тем вероятнее он будет верным. Заметим, что ширина доверительного интервала зависит от объема или размера выборки, а также от разброса (изменчивости) данных. Увеличение размера выборки делает оценку среднего более надежной. Увеличение разброса наблюдаемых значений уменьшает надежность оценки.

Вычисление доверительных интервалов основывается на предположении нормальности наблюдаемых величин. Если это предположение не выполнено, то оценка может оказаться плохой, особенно для малых выборок.

При увеличении объема выборки, скажем, до 100 или более, качество оценки улучшается и без предположения нормальности выборки.

Довольно трудно «ощутить» числовые измерения, пока данные не будут содержательно обобщены. Диаграмма часто полезна в качестве отправной точки. Мы можем также сжать информацию, используя важные характеристики данных. В частности, если бы мы знали, из чего состоит представленная величина, или если бы мы знали, насколько широко рассеяны наблюдения, то мы бы смогли сформировать образ этих данных.

Среднее арифметическое, которое очень часто называют просто «среднее», получают путем сложения всех значений и деления этой суммы на число значений в наборе.

Это можно показать с помощью алгебраической формулы. Набор n наблюдений переменной X можно изобразить как X 1 , X 2 , X 3 , ..., X n . Например, за X можно обозначить рост индивидуума (см), X 1 обозначит рост 1 -го индивидуума, а X i — рост i -го индивидуума. Формула для определения среднего арифметического наблюдений (произносится «икс с чертой»):

= (Х 1 + Х 2 + ... + X n) / n

Можно сократить это выражение:

где (греческая буква «сигма») означает «суммирование», а индексы внизу и вверху этой буквы означают, что суммирование производится от i = 1 до i = n . Это выражение часто сокращают еще больше:

Медиана

Если упорядочить данные по величине, начиная с самой маленькой величины и заканчивая самой большой, то медиана также будет характеристикой усреднения в упорядоченном наборе данных.

Медиана делит ряд упорядоченных значений пополам с равным числом этих значений как выше, так и ниже ее (левее и правее медианы на числовой оси).

Вычислить медиану легко, если число наблюдений n нечетное . Это будет наблюдение номер (n + 1)/2 в нашем упорядоченном наборе данных.

Например, если n = 11 , то медиана - это (11 + 1)/2 , т. е. 6-е наблюдение в упорядоченном наборе данных.

Если n четное , то, строго говоря, медианы нет. Однако обычно мы вычисляем ее как среднее арифметическое двух соседних средних наблюдений в упорядоченном наборе данных (т. е. наблюдений номер (n/2) и (n/2 + 1) ).

Так, например, если n = 20 , то медиана - это среднее арифметическое наблюдений номер 20/2 = 10 и (20/2 + 1) = 11 в упорядоченном наборе данных.

Мода

Мода - это значение, которое встречается наиболее часто в наборе данных; если данные непрерывные, то мы обычно группируем их и вычисляем модальную группу.

Некоторые наборы данных не имеют моды, потому что каждое значение встречается только 1 раз. Иногда бывает более одной моды; это происходит тогда, когда 2 значения или больше встречаются одинаковое число раз и встречаемость каждого из этих значений больше, чем любого другого значения.

Как обобщающую характеристику моду используют редко.

Среднее геометрическое

При несимметричном распределении данных сред­нее арифметическое не будет обобщающим показа­телем распределения.

Если данные скошены вправо, то можно создать более симметричное распределе­ние, если взять логарифм (по основанию 10 или по основанию е ) каждого значения переменной в наборе данных. Среднее арифметическое значений этих логарифмов - характеристика распределения для преобразованных данных.

Чтобы получить ме­ру с теми же единицами измерения, что и первона­чальные наблюдения, нужно осуществить обратное преобразование - потенцирование (т. е. взять анти­логарифм) средней логарифмированных данных; мы называем такую величину среднее геометрическое.

Если распределение данных логарифма приблизитель­но симметричное, то среднее геометрическое подобно медиане и меньше, чем среднее необработанных дан­ных.

Взвешенное среднее

Взвешенное среднее используют тогда, когда не­которые значения интересующей нас переменной x более важны, чем другие. Мы присоединяем вес w i к каждому из значений x i в нашей выборке для то­го, чтобы учесть эту важность.

Если значения x 1 , x 2 ... x n имеют соответствующий вес w 1 , w 2 ... w n , то взвешенное арифметическое среднее выглядит следующим образом:

Например, предположим, что мы заинтересованы в определении средней продолжительности госпита­лизации в каком-либо районе и знаем средний реа­билитационный период больных в каждой больнице. Учитываем количество информации, в первом при­ближении принимая за вес каждого наблюдения число больных в больнице.

Взвешенное среднее и среднее арифметическое идентичны, если каждый вес равен единице.

Размах (интервал изменения)

Размах - это разность между максимальным и минимальным значениями переменной в наборе данных; этими двумя величинами обозначают их разность. Обратите внимание, что размах вводит в заблуждение, если одно из значений есть выброс (см. раздел 3).

Размах, полученный из процентилей

Что такое процентили

Предположим, что мы расположим наши данные упорядоченно от самой маленькой величины перемен­ной X и до самой большой величины. Величина X , до которой расположен 1% наблюдений (и выше которой расположены 99% наблюдений), называется первым процентилем .

Величина X , до которой находится 2% наблюдений, называется 2-м процентилем , и т. д.

Величины X , которые делят упорядоченный набор значений на 10 равных групп, т. е. 10-й, 20-й, 30-й,..., 90 и процентили, называются децилями . Величины X , которые делят упорядоченный набор значений на 4 равные группы, т.е. 25-й, 50-й и 75-й процентили, называются квартилями . 50-й процентиль - это ме­диана .

Применение процентилей

Мы можем добиться такой формы описания рас­сеяния, на которую не повлияет выброс (аномальное значение), исключая экстремальные величины и определяя размах остающихся наблюдений.

Межквартильный размах - это разница между 1-м и 3-м квартилями, т.е. между 25-м и 75-м процентилями. В него входят центральные 50% наблюдений в упорядоченном наборе, где 25% наблюдений находятся ниже центральной точки и 25% - выше.

Интердецильный размах содержит в себе центральные 80% наблюдений, т. е. те наблю­дения, которые располагаются между 10-м и 90-м процентилями.

Мы часто используем размах, который содержит 95% наблюдений, т.е. он исключает 2,5% наблюдений снизу и 2,5% сверху. Указание такого интервала актуально, например, для осуществления диагностики болезни. Такой интервал называется референтный интервал , референтный размах или нормальный размах .

Дисперсия

Один из способов измерения рассеяния данных за­ключается в том, чтобы определить степень отклоне­ния каждого наблюдения от средней арифметической. Очевидно, что чем больше отклонение, тем больше изменчивость, вариабельность наблюдений.

Однако мы не можем использовать среднее этих отклонений как меру рассеяния, потому что положительные от­клонения компенсируют отрицательные отклонения (их сумма равна нулю). Чтобы решить эту проблему, мы возводим в квадрат каждое отклонение и находим среднее возведенных в квадрат отклонений; эта величина называется вариацией , или дисперсией .

Возьмем n наблюдений x 1 , x 2 , х 3 , ..., x n , среднее которых равняется .

Вычисляем дисперсию:

В случае, если мы имеем дело не с генеральной совокупностью, а с выборкой, то вычисляется выборочная дисперсия:

Теоретически можно показать, что полу­чится более точная дисперсия по выборке, если разделить не на n , а на (n-1).

Единицы измерения (размерность) вариации - это квадрат единиц измерения первоначальных на­блюдений.

Например, если измерения производятся в килограммах, то единица измерения вариации будет килограмм в квадрате.

Среднеквадратическое отклонение, стандартное отклонение выборки

Среднеквадратическое отклоне­ние - это положительный квадратный корень из .

Стандартное отклонение выборки - корень из выборочной дисперсии.

Цели: дать понятия, алгоритмы нахождения среднего арифметического и медианы, размаха и моды ряда чисел, показать значимость этой темы в практической деятельности человека; приобретение практических навыков выполнения этих заданий; повышение уровня математической подготовки, предъявляемой новыми стандартами.

  • вооружить учащихся системой знаний по теме "Определение вероятности событий, среднего арифметического и медианы набора чисел";
  • сформировать навыки применения данных знаний при решении разнообразных задач различной сложности;
  • подготовить учащихся к сдаче ГИА;
  • сформировать навыки самостоятельной работы.

Ход урока

1. Теоретическая часть.

1). Нахождение вероятности событий.

В повседневной жизни, в практической и научной деятельности часто наблюдают те или иные явления, проводят определенные эксперименты.

В процессе наблюдения или эксперимента приходится встречаться с некоторыми случайными событиями , т. е. такими событиями, которые могут произойти или не произойти. Например, выпадение орла или решки при подбрасывании монеты, поражение мишени или промах при выстреле, выигрыш спортивной команды во встрече с соперником, проигрыш или ничейный результат- все это случайные события.

Закономерности случайных событий изучает специальный раздел математики, который называется теорией вероятностей . Методы теории вероятностей применяются во многих областях знаний.

Зарождение теории вероятностей произошло в поисках ответа на вопрос: как часто наступает то, или иное событие в большой серии происходящих в одинаковых условиях испытаний со случайными исходами.

Для того чтобы оценить вероятность интересующего нас события необходимо провести большое число опытов или наблюдений, и только после этого можно определить вероятность этого события.

Например, бросание игрального кубика. При бросании кубика шансы выпадения на его верхней грани каждого числа очков от 1 до 6 одинаковы. Говорят, что существует 6 равновозможных исходов опыта с бросанием кубика: выпадение 1,2,3,4,5, и 6 очков.

Исходы в этом опыте считают равновозможными, если шансы этих исходов одинаковы.

Исходы, при которых происходит некоторое событие, называются благоприятными исходами для этого события.

Определение: отношение числа благоприятных исходов N (A) события A к числу всех равновозможных исходов N этого события называется вероятностью события A.

Схема нахождения вероятности события.

Для нахождения вероятности случайного события A при проведении некоторого испытания следует:

  • найти число N всех равновозможных исходов данного испытания;
  • найти количество N(A) тех благоприятных исходов испытания, в которых наступает событие А;
  • найти отношение N(A)/N; это и есть вероятность события A

Например: 1 . В коробке лежат 10 красных, 7 желтых и 3 синих шара. Какова вероятность, что взятый наугад шар окажется желтым?

Решение. Равновозможные исходы- (10+7+3)=20

Благоприятные исходы-7

2. В коробке лежит 5 черных шаров. Какое наименьшее число белых шаров нужно положить в эту коробку, чтобы после этого вероятность наугад достать из коробки черный шар была не больше 0,15?

Решение: Пусть x-белые шары.

2) Определение и нахождение среднего арифметического и медианы ряда чисел.

Определение: средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству.

Среднее арифметическое набора чисел x 1 ,x 2 ,x 3 ,x 4 ,x 5 принято обозначать x.

Например, среднее арифметическое пяти чисел запишется так:

X = (x 1 +x 2 +x 3 +x 4 +x 5)/5

Пример: найти среднюю оценку учащегося по математике, если за истекший период он получил: 3,4,4,5,3,2,4,3.

Решение: (3+4+4+5+3+2+4+3)/8=3,5

Определение: медианой называется число, разделяющее набор чисел на две части, равные по численности, так что с одной стороны от этого числа все значения больше медианы, а с другой меньше. Вместо "медиана" можно было бы сказать середина.

Схема нахождения медианы набора чисел:

Для нахождения медианы набора чисел следует:

  • упорядочить числовой набор (записать в порядке возрастания);
  • одновременно зачеркиваем "самое большое" и "самое маленькое" числа данного набора чисел до тех пор, пока не останется одно число или два числа;
  • если останется одно число, то оно и есть медиана (для нечетного набора чисел);
  • если останется два числа, то медианой будет среднее арифметическое двух оставшихся чисел (для четного набора чисел).

Медиану принято обозначать буквой М.

Пример: найти медиану набора чисел: 9,3,1,5,7.

Решение: запишем числа в порядке возрастания: 1,3,5,7,9.

Вычеркнем 1 и 9, 3 и 7. Оставшееся число 5 и есть медиана. М=5

Пример: найти медиану набора чисел 2,3,3,5,7,10.

Решение: вычеркнем 2 и 10, 3 и 7. Для нахождения М нужно: (3+5)/2= 4. М=4

Определение и нахождение размаха и моды.

Определение: размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

Размах ряда находят, когда хотят определить, как велик разброс данных в ряду.

Определение: модой ряда чисел называется число, которое встречается в данном ряду чаще других.

Ряд чисел может иметь более одной моды, а может не иметь моды совсем.

Пример: На уроке физкультуры 14 школьников прыгали в высоту, а учитель записывал их результаты. Получился такой ряд данных (в см):

125, 110, 130, 125, 120, 130, 140, 125, 110, 130, 120, 125, 120, 125.

Найти медиану, размах и моду измерения.

Решение: выпишем все варианты измерения в порядке возрастания, разделяя пробелами группы одинаковых результатов:

110, 110, 120, 120, 120, 125, 125, 125, 125, 125, 130, 130, 130, 140.

Размах измерения равен 140-110=30.

125-встретилось наибольшее число раз, т. е. 5 раз; это мода измерения.

2. Практическая часть.

1). Задачи для самостоятельного решения на теорию вероятностей.

1. На 100 электрических лампочек в среднем приходится 4 бракованных. Какова вероятность, что взятая наугад лампочка окажется исправной? Ответ: 0,96.

2. На 400 компакт-дисков в среднем приходится 8 бракованных. Какова вероятность, что взятый наугад компакт-диск окажется исправным? Ответ: 0,98.

3. 17 точек из 50 покрашены в синий цвет, а 13 точек из оставшихся покрашены в оранжевый цвет. Какова вероятность того, что случайно выбранная точка окажется окрашенной? Ответ: 0,6.

4. Из слова "математика" случайным образом выбирается одна буква. Какова вероятность, что выбранная буква встречается в этом слове только 1 раз? Ответ: 0,3.

5. Из слова "аттестация" случайным образом выбирается одна буква. Какова вероятность, что выбранная буква окажется буквой "а"? Ответ: 0,2

6. Из 30девятиклассников 4 выбрали экзамен по физике, 12 - по обществознанию, 8- по иностранному языку, а остальные по литературе. Какова вероятность, что выбранный ученик будет сдавать экзамен по литературе. Ответ: 0,2.

7. Контрольная работа по математике состоит из 15 задач: 4 задачи по геометрии, 2 задачи по теории вероятностей, остальные по алгебре. Ученик ошибся в одной задаче. Какова вероятность, что ученик ошибся в задаче по алгебре? Ответ: 0,6.

8. На 1000 автомобилей, выпущенных в 2007-2009 г. г., 150 имеют дефект тормозной системы. Какова вероятность купить неисправную машину? Ответ: 0,15.

9. В соревнованиях по художественной гимнастике участвуют: 3 гимнастки из России, 3 гимнастки из Украины и 4 гимнастки из Белоруссии. Порядок выступления определятся жеребьевкой. Найдите вероятность того, что первой будет выступать гимнастка из России. Ответ 0,3

10. На чемпионате по художественной гимнастике выступает 18 гимнасток, среди них 3 гимнастки из России, 2 гимнастки из Китая. Порядок выступления определяется жеребьевкой. Найдите вероятность того, что последней будет выступать гимнастка или из России, или из Китая? Ответ: 5/18.

11. Из класса, в котором учатся 12 мальчиков и 8 девочек, выбирают по жребию 1 дежурного. Какова вероятность того, что это будет мальчик? Ответ: 0,6.

12. Одновременно бросают 2 монеты. С какой вероятностью на них выпадут 2 решки? Ответ 0,25.

2) Задачи на нахождение среднего арифметического и медианы, размаха и моды набора чисел.

Фрезеровщики бригады затратили на обработку одной детали разное время (в мин.), представленное в виде ряда данных: 40; 37; 35; 36; 32; 42; 32; 38; 32. На сколько медиана этого набора отличается от среднего арифметического? Ответ: 0.

В саду посадили 5 саженцев яблони, высота которых в сантиметрах следующая: 168, 13, 156, 165, 144. На сколько отличается среднее арифметическое этого набора чисел от его медианы? Ответ: 3, 8

Растущие в саду 6 деревьев груши дали урожай, масса которого (в кг) для каждого из деревьев следующая: 29, 35, 26, 28, 32, 36. На сколько отличается среднее арифметическое этого набора чисел от его медианы? Ответ: 0,5

Время обслуживания кассиром каждого из нескольких покупателей магазина образовало следующий ряд данных: 2 мин. 42 сек., 3мин. 2 сек., 3 имн. 7сек., 2 мин. 54 сек., 2 мин. 48 сек. Найдите среднее значение и медиану этого ряда данных. Ответ: 2 мин. 55 сек., 2 мин. 54 сек.

Время между семью звонками, поступившими в службу такси образовало следующий ряд данных: 34 сек., 45 сек., 1 мин. 16 сек., 38 сек., 43 сек., 52 сек. Найдите среднее значение и медиану этого ряда данных. Ответ: 48 сек., 44 сек.

Литература: Мордкович, А. Г. ,И. М. Смирновой. Учебнок для общеобразовательных учреждений (базовый уровень) - М.: Мнемозина, 2009. - 164 с.

  • Макарычев Ю. Н. Алгебра: элементы статистики и теории вероятностей: учебное пособие для учащихся 7-9 классов общеобразовательных учреждений / Ю. Н. Макарычев, Н. Г. Миндюк. Под ред. С. А. Теляковского - М.: Просвещение. - 2003.
  • Макарычев Ю. Н. , Миндюк Н. Г. Изучаем элементы статистики. // Математика в школе. - 2004. - №5.
  • Макарычев Ю. Н. , Миндюк Н. Г. Начальные сведения из теории вероятностей в школьном курсе алгебры. // Математика в школе. - 2004. - №7.
  • Мордкович А. Г, Семенов П. В. События. Вероятности. Статистическая обработка данных: дополнительные параграфы к курсу алгебры 7-9 кл. общеобразоват. Учреждений. - М.: Мнемозина, 2003.
  • О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы / В. А. Болотов // Математика в школе - 2003. - №9.
  • Ткачева М. В. Элементы статистики и вероятность: учебное пособие для учащихся 7-9 классов общеобразовательных учреждений / М. В. Ткачева, Н. Е. Федорова. - М.: Просвещение, 2004.
  • Федосеев В. Н. Элементы теории вероятностей для 7-9 классов средней школы / Математика в школе. -2002, №3
  • Студенецкая В. Н. Решение задач по статистике, комбинаторике и теории вероятностей 7-9 классы, Волгоград, Учитель, 2009.
  • Среднее арифметическое ряда чисел – это сумма данных чисел, поделенная на количество слагаемых.

    Среднее арифметическое называют средним значением числового ряда.

    Пример : Найдем среднее арифметическое чисел 2, 6, 9, 15.

    Решение. У нас четыре числа. Значит, надо их сумму разделить на 4. Это и будет среднее арифметическое данных чисел:
    (2 + 6 + 9 + 15) : 4 = 8.

    Среднее геометрическое ряда чисел – это корень n-й степени из произведения этих чисел.

    Пример : Найдем среднее геометрическое чисел 2, 4, 8.

    Решение. У нас три числа. Значит, надо найти корень третьей степени из их произведения. Это и будет среднее геометрическое данных чисел:

    3 √ 2 · 4 · 8 = 3 √64 = 4

    Размах рядачисел – это разность между наибольшим и наименьшим из этих чисел.

    Пример : Найти размах чисел 2, 5, 8, 12, 33.

    Решение : Наибольшее число здесь 33, наименьшее 2. Значит, размах составляет 31:

    Мода ряда чисел – это число, которое встречается в данном ряду чаще других.

    Пример : Найти моду ряда чисел 1, 7, 3, 8, 7, 12, 22, 7, 11, 22, 8.

    Решение : Чаще всего в этом ряде чисел встречается число 7 (3 раза). Оно и является модой данного ряда чисел.

    Медиана.

    В упорядоченном ряде чисел:

    Медиана нечетного количества чисел – это число, записанное посередине.

    Пример : В ряде чисел 2, 5, 9, 15, 21 медианой является число 9, находящееся посередине.

    Медиана четного количества чисел – это среднее арифметическое двух чисел, находящихся посередине.

    Пример : Найти медиану чисел 4, 5, 7, 11, 13, 19.

    Решение : Здесь четное количество чисел (6). Поэтому ищем не одно, а два числа, записанных посередине. Это числа 7 и 11. Находим среднее арифметическое этих чисел:

    (7 + 11) : 2 = 9.

    Число 9 и является медианой данного ряда чисел.

    В неупорядоченном ряде чисел:

    Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.

    Пример 1 : Найдем медиану произвольного ряда чисел 5, 1, 3, 25, 19, 17, 21.

    Решение : Располагаем числа в порядке возрастания:

    1, 3, 5, 17 , 19, 21, 25.

    Посередине оказывается число 17. Оно и является медианой данного ряда чисел.

    Пример 2 : Добавим к нашему произвольному ряду чисел еще одно число, чтобы ряд стал четным, и найдем медиану:

    5, 1, 3, 25, 19, 17, 21, 19.

    Решение : Снова выстраиваем упорядоченный ряд:

    1, 3, 5, 17 , 19 , 19, 21, 25.

    Посередине оказались числа 17 и 19. Находим их среднее значение:

    (17 + 19) : 2 = 18.

    Число 18 и является медианой данного ряда чисел.