Ультразвуковая диагностика в офтальмологии. УЗИ глаза: как делается и что показывает

5
1 УНИИФ - филиал ФГБУ НМИЦ ФПИ Минздрава России, Екатеринбург
2 ООО «Клиника «Сфера», Москва, Россия
3 ООО «Клиника «Сфера» , Москва, Россия
4 ООО «Клиника лазерной медицины «Сфера» профессора Эскиной», Москва; ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова» МЗ РФ, Москва
5 ГБОУ ВПО «РНИМУ им. Н.И. Пирогова» Минздрава России, Москва; ГБУЗ «ГКБ № 15 им. О.М. Филатова» ДЗМ

Цель: оценить морфофункциональные параметры зрительного анализатора у пациентов с близорукостью по мере увеличения длины переднезадней оси (ПЗО) глаза.

Материалы и методы: в исследовании приняли участие 36 пациентов (71 глаз). Все пациенты в ходе исследования были поделены на 4 группы по величине переднезадней оси глазного яблока. Первую группу составили пациенты с миопией слабой степени и величиной ПЗО от 23,81 до 25,0 мм; вторую – пациенты с миопией средней степени и величиной ПЗО от 25,01 до 26,5 мм; третью – пациенты с миопией высокой степени, величина ПЗО выше 26,51 мм; четвертую – пациенты с рефракцией приближенной к эмметропической и величиной ПЗО от 22,2 до 23,8 мм. Помимо стандартного офтальмологического обследования, пациентам проводился следующий диагностический комплекс мероприятий: эхобиометрия, определение оптической плотности макулярного пигмента (ОПМП), цифровое фотографирование глазного дна, оптическая когерентная томография переднего и заднего отрезков глазного яблока.

Результаты: средний возраст пациентов составил 47,3±13,9 лет. При статистической обработке полученных результатов исследуемых показателей отмечается снижение некоторых из них по мере увеличения ПЗО: максимально-коррегированной остроты зрения (p=0,01), чувствительности в фовеа (p=0,008), средней толщины сетчатки в фовеа (p=0,01), средней толщины хориоидеи в назальном и темпоральном секторах (p=0,005; p=0,03). Кроме того, во всех группах испытуемых выявлена значимая статистически достоверная обратная корреляционная взаимосвязь, между ПЗО и (МКОЗ) -0,4; а также толщиной сетчатки в фовеа -0,6; толщиной хориоидеи в фовеа -0,5 и чувствительностью в фовеа -0,6; (p<0,05).

Заключение: при детальном анализе полученных средних значений исследуемых параметров обнаружена тенденция к общему снижению морфофункциональных показателей глазного яблока по мере увеличения ПЗО в группах. В то время как, полученные корреляционные данные проведенного клинического испытания свидетельствуют о тесной взаимосвязи между морфометрическими и функциональными параметрами зрительного анализатора.

Ключевые слова: миопия, эмметропия, оптическая плотность макулярного пигмента, перезнезадняя ось глаза, морфометрические параметры, каротиноиды, гетерохроматическая фликкер-фотометрия, оптическая когерентная томография сетчатки.

Для цитирования: Егоров Е.А., Эскина Э.Н., Гветадзе А.А., Белогурова А.В., Степанова М.А., Рабаданова М.Г. Морфометрические особенности глазного яблока у пациентов с близорукостью и их влияние на зрительные функции. // РМЖ. Клиническая офтальмология. 2015. № 4. С. 186–190.

Для цитирования: Егоров Е.А., Эскина Э.Н., Гветадзе А.А., Белогурова А.В., Степанова М.А., Рабаданова М.Г. Морфометрические особенности глазного яблока у пациентов с близорукостью и их влияние на зрительные функции // РМЖ. Клиническая офтальмология. 2015. №4. С. 186-190

Myopic eyes: morphometric features and their influence on visual function.
Egorov E.A.1, Eskina E.N.3,4,5,
Gvetadze A.A.1,2, Belogurova A.V.3,5,
Stepanova M.A.3,5, Rabadanova M.G.1,2

1 Pirogov Russian State National Medical University, 117997, Ostrovityanova st., 1, Moscow, Russian Federation;
2 Municipal Clinical Hospital № 15 named after O.M. Filatov, 111539, Veshnyakovskaya st., 23, Moscow, Russian Federation;
3 National medical surgical Center named after N.I. Pirogov, 105203, Nizhnyaya Pervomayskaya st., 70, Moscow, Russian Federation;
4 Federal Biomedical Agency of Russia, 125371, Volokolamskoe shosse, 91, Moscow, Russian Federation;
5 Laser surgery clinic «Sphere», 117628, Starokachalovskaya st., 10, Moscow, Russian Federation;

Purpose: to evaluate morphofunctional parameters of myopic eyes with increase of the length of eye anteroposterior axis (APA).

Methods: the study involved 36 patients (71 eyes). All patients were divided into 4 groups depending on the APA length. 1st group involved patients with mild myopia and APA length from 23,81 to 25.0 mm; the 2nd –with moderate myopia and APA length from 25,01 to 26.5 mm; 3d - with high myopia and APA length above 26,51 mm; 4th – with emmetropic refraction and APA length from 22.2 to 23.8 mm. Patients underwent standard ophthalmic examination and additional diagnostic examination: echobiometry, determination of optical density of macular pigment, fundus photography, optical coherence tomography of the anterior and posterior segments of the eye.

Results: The mean age was 47.3±13,9 years. Statistic analysis showed the reduction of some parameters with APA length"s increasing: best corrected visual acuity (BCVA) (p=0,01), foveal sensitivity (p=0,008), average foveal retinal thickness (p=0,01), average thickness in the temporal and nasal choroids sectors (p=0,005; p=0,03). Inverse correlation between axial length and BCVA (r=-0,4); the foveal retinal thickness (r=-0,6); th­­e foveal choroidal thickness (r= -0,5) and foveal sensitivity(r= -0,6) were revealed in all groups (p<0,05).

Conclusion: the analysis showed the tendency of a general decrease of morphological and functional parameters of the eye with the increase of axial length in all groups. Revealed correlation showed a close relationship between morphometric and functional parameters of the eye.

Key words: myopia, emmetropia, macular pigment optical density, eye anteroposterior axis, morphofunctional parameters, carotenoids, heterochromatic flicker photometry, optical coherence tomography of the retina.

For citation: Egorov E.A., Eskina E.N., Gvetadze A.A., Belogurova A.V.,
Stepanova M.A., Rabadanova M.G. Myopic eyes: morphometric features and
their influence on visual function // RMJ. Clinical ophthalomology.
2015. № 4. P. 186–190.

В статье приведены данные о морфометрических особенностях глазного яблока у пациентов с близорукостью и их влияние на зрительные функции

В структуре заболеваемости органа зрения частота миопии в различных регионах Российской Федерации колеблется от 20 до 60,7%. Известно, что среди инвалидов по зрению 22% составляют лица молодого возраста, основной причиной инвалидности у которых является осложненная близорукость высокой степени .
Как в нашей стране, так и за рубежом у подростков и «молодых взрослых» миопия высокой степени часто сочетается с патологией сетчатки и зрительного нерва, затрудняя тем самым прогнозирование и течение патологического процесса . Медико-социальная значимость проблемы усугубляется тем, что осложненная миопия поражает людей в самом работоспособном возрасте. Прогрессирование близорукости может приводить к серьезным необратимым изменениям в глазу и значительной потере зрения . По итогам Всероссийской диспансеризации, заболеваемость детей и подростков миопией за последние 10 лет выросла в 1,5 раза. Среди взрослых инвалидов по зрению вследствие миопии 56% имеют врожденную миопию, остальные – приобретенную, в т. ч. в школьные годы .
Результаты комплексных эпидемиологических и клинико-генетических исследований показали, что близорукость является мультифакториальным заболеванием. Понимание патогенетических механизмов нарушения зрительных функций при миопии остается одним из актуальных вопросов офтальмологии. Звенья патогенеза при миопической болезни сложно взаимодействуют между собой . Важную роль в течении близорукости играют морфологические свойства склеры. Именно им придается особо важное значение в патогенезе удлинения глазного яблока. В склере близоруких людей происходят дистрофические и структурные изменения . Установлено, что растяжимость и деформация склеры глаза взрослых людей с высокой миопией заметно больше, чем при эмметропии, особенно в области заднего полюса . Увеличение длины глаза при миопии в настоящее время рассматривается как следствие метаболических нарушений в склере, а также изменений регионарной гемодинамики . Упруго-эластические свойства склеры и изменения длины переднезадней оси (ПЗО) давно интересовали ученых. Эволюция изучения анатомических параметров глазного яблока отражена в работах многих авторов.
По данным Е.Ж. Трона, длина оси эмметропического глаза варьирует от 22,42 до 27,30 мм. В отношении вариабельности длины ПЗО при миопии от 0,5 до 22,0D Е.Ж. Трон приводит такие данные: длина оси при миопии 0,5–6,0D – от 22,19 до 28,11 мм; при миопии 6,0–22,0D – от 28,11 до 38,18 мм. По мнению Т.И. Ерошевского и А.А. Бочкаревой, биометрические показатели сагиттальной оси нормального глазного яблока в среднем равны 24,00 мм . По данным Э.С. Аветисова, при эмметропии длина ПЗО глаза составляет 23,68±0,910 мм, при близорукости 0,5–3,0D – 24,77±0,851 мм; при миопии 3,5–6,0D – 26,27±0,725 мм; при миопии 6,5–10,0D – 28,55±0,854 мм . Довольно четкие параметры эмметропических глаз приведены в Национальном руководстве по офтальмологии: длина ПЗО эмметропического глаза в среднем составляет 23,92±1,62 мм . В 2007 г. И.А. Ремесниковым создана новая анатомо-оптическая и соответствующая ей редуцированная оптическая схема эмметропического глаза с клинической рефракцией 0,0D и ПЗО 23,1 мм .
Как уже упоминалось выше, при миопии имеют место дистрофические изменения сетчатки, что, скорее всего, вызвано нарушением кровотока в хориоидальных и перипапиллярных артериях, а также ее механическим растяжением . Доказано, что у людей с осевой близорукостью высокой степени средняя толщина сетчатки и хориоидеи в субфовеа меньше, чем у эмметропов . Значит, можно предположить, что чем больше длина ПЗО, тем выше «перерастяжение» оболочек глазного яблока и ниже плотность тканей: склеры, хориоидеи, сетчатки. В результате этих изменений снижается и количество клеток ткани и клеточных веществ: например, истончается слой ретинального пигментного эпителия, уменьшается концентрация активных соединений, возможно, каротиноидов в макулярной области.

Известно, что суммарная концентрация каротиноидов: лютеина, зеаксантина и мезозеаксантина в центральной области сетчатки составляет оптическую плотность макулярного пигмента (ОПМП). Макулярные пигменты (МП) абсорбируют синюю часть спектра и обеспечивают мощную антиоксидантную защиту от свободных радикалов, перекисного окисления липидов . По данным ряда авторов, уменьшение показателя ОПМП сопряжено с риском развития макулопатий и снижением центрального зрения.
Кроме того, многие авторы сходятся во мнении, что с возрастом происходит снижение ОПМП . Исследования уровня ОПМП в здоровой популяции у разновозрастных пациентов и пациентов всевозможных этнических групп во многих странах мира составляют весьма противоречивую картину. Так, например, среднее значение ОПМП в китайской популяции у здоровых добровольцев в возрасте от 3 до 81 года составило 0,303±0,097. Кроме того, была выявлена обратная корреляционная связь с возрастом . Среднее значение ОПМП у здоровых добровольцев в Австралии в возрасте от 21 до 84 лет составило 0,41±0,20 . Для населения Великобритании в возрасте от 11 до 87 лет общее среднее значение ОПМП в группе составило 0,40±0,165. Отмечена связь с возрастом и цветом радужки .
К сожалению, в Российской Федерации масштабных исследований по изучению показателя ОПМП в здоровой популяции, у пациентов с аномалиями рефракции, патологическими изменениями макулярной зоны и другими офтальмологическими заболеваниями не проводилось. Этот вопрос до сих пор открыт и весьма интересен. Единственное исследование ОПМП в здоровой российской популяции было проведено в 2013 г. Э.Н. Эскиной и соавт. В этом исследовании приняли участие 75 здоровых добровольцев в возрасте от 20 до 66 лет. Средний показатель ОПМП в разновозрастных группах варьировал от 0,30 до 0,33, а коэффициент корреляции Пирсона свидетельствовал об отсутствии связи между величиной ОПМП и возрастом при нормально протекающих возрастных процессах в органе зрения .
Вместе с тем результат проведенного зарубежными авторами клинического исследования подтверждает, что у здоровых добровольцев значения ОПМП положительно коррелируют с показателями центральной толщины сетчатки (r=0,30), измеренными при помощи гетерохроматической фликкер-фотометрии и оптической когерентной томографии (ОКТ) соответственно .
Поэтому особый интерес, на наш взгляд, представляет изучение ОПМП не только в здоровой популяции у разновозрастных пациентов и пациентов всевозможных этнических групп, но и при дистрофических офтальмопатиях и аномалиях рефракции, в частности при миопии. Кроме того, любопытным остается и факт влияния увеличения длины ПЗО на топографо-анатомические и функциональные показатели зрительного анализатора (в частности, на ОПМП, толщину сетчатки, хориоидеи и др.). Актуальность вышеуказанных фундаментальных вопросов определила цель и задачи настоящего исследования.
Цель исследования: оценить морфофункциональные параметры зрительного анализатора у пациентов с близорукостью по мере увеличения длины ПЗО глаза.

Материалы и методы
Всего обследовано 36 пациентов (72 глаза). Все пациенты в ходе исследования были поделены на группы исключительно по величине ПЗО глазного яблока (по классификации Э.С. Аветисова) . 1-ю группу составили пациенты с миопией слабой степени и величиной ПЗО от 23,81 до 25,0 мм; 2-ю – с миопией средней степени и величиной ПЗО от 25,01 до 26,5 мм; 3-ю – с миопией высокой степени и величиной ПЗО выше 26,51 мм; 4-ю – пациенты с рефракцией, приближенной к эмметропической, и величиной ПЗО от 22,2 до 23,8 мм (табл. 1).
Пациенты не принимали препараты, содержащие каротиноиды, не придерживались специальной диеты, обогащенной лютеином и зеаксантином. Всем испытуемым проводилось стандартное офтальмологическое обследование, позволившее исключить у них макулярную патологию, предположительно влияющую на результаты проводимого обследования.
Обследование включало следующий диагностический комплекс мероприятий: авторефрактометрию, визометрию с определением максимально-корригированной остроты зрения (МКОЗ), бесконтактную компьютерную пневмотонометрию, биомикроскопию переднего отрезка с помощью щелевой лампы, статическую автоматическую периметрию с коррекцией аметропии (оценивали показатели MD, PSD, а также чувствительность в фовеа), непрямую офтальмоскопию макулярной области и диска зрительного нерва с помощью линзы 78 диоптрий. Кроме того, всем пациентам были проведены эхобиометрия на аппарате фирмы Quantel Medical (Франция), определение ОПМП на приборе Mpod MPS 1000, Tinsley Precision Instruments Ltd., Croydon, Essex (Великобритания), цифровое фотографирование глазного дна с помощью фундус-камеры Carl Zeiss Medical Technology (Германия); ОКТ переднего отрезка глазного яблока на аппарате OCT-VISANTE Carl Zeiss Medical Technology (Германия) (по данным исследования ОСТ-VISANTЕ, оценивали центральную толщину роговицы); ОКТ сетчатки на аппарате Cirrus HD 1000 Carl Zeiss Medical Technology (Германия). По данным ОКТ, оценивали среднюю толщину сетчатки в области фовеа, рассчитанную прибором в автоматическом режиме, с помощью протокола Macular Cube 512х128, а также среднюю толщину хориоидеи, которую рассчитывали вручную от гиперрефлективной границы, соответствующей РПЭ, до границы хориоидо-склерального интерфейса, отчетливо видимой на горизонтальном 9-миллиметровом скане, сформированном через центр фовеа при использовании протокола «High Definition Images: HD Line Raster». Измерение толщины хориоидеи проводили в центре фовеа, а также в 3 мм в назальном и темпоральном направлениях от центра фовеа, в одинаковое время суток с 9:00 до 12:00 .
Статистическая обработка данных клинического исследования выполнялась по стандартным статистическим алгоритмам с применением программного обеспечения Statistica, версия 7.0. Достоверностью считалась разница величин при p<0,05 (уровень значимости 95%). Определяли средние значения, стандартное отклонение, а также проводили корреляционный анализ, рассчитывая коэффициент ранговой корреляции Spearman. Проверка гипотез при определении уровня статистической значимости при сравнении 4 несвязанных групп осуществлялась с использованием Kruskal-Wallis ANOVA теста.

Результаты
Средний возраст пациентов составил 47,3±13,9 года. Распределение по полу было следующим: 10 мужчин (28%), 26 женщин (72%).
Средние значения исследуемых параметров представлены в таблицах 2, 3 и 4.
При проведении корреляционного анализа выявлена статистически достоверная обратная связь между ПЗО и некоторыми параметрами (табл. 5).
Особый интерес, на наш взгляд, представляют данные корреляционного исследования в группе пациентов с диагнозом «миопия высокой степени». Результаты анализа представлены в таблице 6.

Заключение
При детальном рассмотрении полученных средних значений исследуемых параметров выявляется тенденция к общему снижению функциональных показателей глаза по мере увеличения ПЗО в группах, в то время как полученные данные корреляционного анализа свидетельствуют о тесной взаимосвязи между морфометрическими и функциональными параметрами зрительного анализатора. Предположительно эти изменения также связаны с «механическим перерастяжением» оболочек у пациентов с близорукостью в связи с увеличением ПЗО.
Отдельно все-таки хотелось бы отметить хоть и недостоверное, но снижение ОПМП в группах, и небольшую тенденцию к отрицательной обратной связи между ОПМП и ПЗО. Возможно, по мере увеличения числа группы испытуемых будет отмечаться более сильная и достоверная корреляционная связь между этими показателями.

Литература

1. Аветисов Э.С. Близорукость. М.: Медицина, 1999. С. 59. .
2. Акопян А.И. и др. Особенности диска зрительного нерва при глаукоме и миопии // Глаукома. 2005. № 4. С. 57–62. .
3. Даль Н.Ю. Макулярные каротиноиды. Могут ли они защитить нас от возрастной макулярной дегенерации? // Офтальмологические ведомости. 2008. № 3. С. 51–53. .
4. Ерошевский Т.И., Бочкарева А.А. Глазные болезни. М.: Медицина, 1989. С. 414. .
5. Зыкова А.В., Рзаев В.М., Эскина Э.Н. Исследование оптической плотности макулярного пигмента у разновозрастных пациентов в норме: Мат-лы VI Росс. общенац. офтальмол. форума. Сборник научных трудов. М., 2013. Т. 2. С. 685–688. .
6. Кузнецова М.В. Причины развития близорукости и ее лечение. М.: МЕДпресс-информ, 2005. С. 176. .
7. Либман E.C., Шахова E.B. Слепота и инвалидность вследствие патологии органа зрения в России // Вестник офтальмологии. 2006. № 1. С. 35–37. .
8. Офтальмология. Национальное руководство / под ред. С.Э. Аветисова, Е.А. Егорова, Л.К. Мошетовой, В.В. Нероева, Х.П. Тахчиди. М.: ГЭОТАР-Медиа, 2008. С. 944. .
9. Ремесников И.А. Закономерности соотношения сагиттальных размеров анатомических структур глаза в норме и при первичной закрытоугольной глаукоме с относительным зрачковым блоком: Автореф. дис. … канд. мед. наук. Волгоград, 2007. С. 2. .
10. Слувко Е.Л. Миопия. Нарушение рефракции – это болезнь // Астраханский вестник экологического образования. 2014. № 2 (28). С. 160–165. .
11. Эскина Э.Н., Зыкова А.В. Ранние критерии риска развития глаукомы у пациентов с близорукостью // Офтальмология. 2014. Т. 11. № 2. С. 59–63. .
12. Abell R.G., Hewitt A.W., Andric M., Allen P.L., Verma N. The use of heterochromatic flicker photometry to determine macular pigment optical density in a healthy Australian population // Graefes Arch Clin Exp Ophthalmol. 2014. Vol. 252 (3). P. 417–421.
13. Beatty S., Koh H.H., Phil M., Henson D., Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration // Surv. Ophthalmol. 2000. Vol. 45. P. 115–134.
14. Bone R.A., Landrum J.T. Macular Pigment in Henle Fiber Membranes a Model for Haidinger"s Brushes // Vision Res. 1984. Vol. 24. P. 103–108.
15. Bressler N.M., Bressler S.B., Childs A.L. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration // Ophthalmology. 2004. Vol. 111. P. 1993–2006.
16. Gupta P., Saw S., Cheung C.Y., Girard M.J., Mari J.M., Bhargava M., Tan C., Tan M., Yang A., Tey F., Nah G., Zhao P., Wong T.Y., Cheng C. Choroidal thickness and high myopia: a case-control study of young Chinese men in Singapore // Acta Ophthalmologica. 2014. DOI: 10.1111/aos.12631.
17. Liew S.H., Gilbert C.E., Spector T.D., Mellerio J., Van Kuijk F.J., Beatty S., Fitzke F., Marshall J., Hammond C.J. Central retinal thickness is positively correlated with macular pigment optical density // Exp Eye Res. 2006. Vol. 82 (5). P. 915.
18. Maul E.A., Friedman D.S., Chang D.S., Bjland M.V., Ramulu P.Y., Jampel H.D., Quigley H.A. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients // Ophthalmol. 2011. Vol. 118. (8). P. 1571–1579.
19. Murray I.J., Hassanali B., Carden D. Macular pigment in ophthalmic practice // Graefes Arch. Clin. Exp. Ophthalmol. 2013. Vol. 251 (10). P. 2355–2362.
20. Rada J.A et al. The sclera and myopia // Exp. Eye Res. 2006. Vol. 82. № 2. P. 185–200.
21. Zhang X., Wu K., Su Y., Zuo C., Chen H., Li M., Wen F. Macular pigment optical density in a healthy Chinese population // Acta Ophthalmol. 2015. DOI: 10.1111/aos.12645.


УЗИ глаз является дополнительной методикой в офтальмологии, которая обладает высокой точностью при выявлении кровоизлияний и оценке переднезадней оси глаза. Последний показатель необходим для выявления прогрессирования миопии у детей и взрослых. Существуют и другие области применения методики. Данный способ диагностики отличается простотой проведения процедуры, отсутствием дополнительной подготовки и быстротой обследования. УЗИ проводится с помощью универсальных и специализированных ультразвуковых аппаратов. Оценку результатов производят в соответствии с нормативными табличными данными.

Показания и противопоказания

Ультразвуковое исследование органов зрения представляет собой неинвазивный метод диагностики, применяемый для выявления многих офтальмологических заболеваний.

Показаниями для УЗИ глаз являются:

  • диагностика отслойки сетчатки, сосудистой оболочки, связанных с опухолевым процессом и другими патологиями,
  • подтверждение наличия новообразований, контроль их роста и эффективности лечения,
  • дифференциальная диагностика внутриглазных опухолей,
  • определение положения хрусталика при помутнении роговицы,
  • сканирование характера помутнений стекловидного тела,
  • выявление невидимых инородных тел в глазу (после травмы), уточнение их размера и локализации,
  • диагностика сосудистых офтальмопатологий,
  • обнаружение кист,
  • диагностика врожденных заболеваний,
  • выявление патологических изменений при глубоком поражении глазного яблока в глазнице (определение характера повреждения – перелом стенки орбиты, нарушение нервных связей, уменьшение самого яблока),
  • уточнение причины смещения глазного яблока вперед – аутоиммунные патологии, опухоли, воспаление, аномалии развития черепа, высокая односторонняя миопия,
  • определение изменений в ретробульбарном пространстве при повышенном внутричерепном давлении, ретробульбарном неврите и других заболеваниях.

Противопоказаниями для УЗИ-диагностики являются травмы глаза, при которых нарушается целостность структур и кровотечения в органах зрения.

Методики

Существует несколько методик ультразвукового исследования глаз:

  1. 1. УЗИ глаз в А-режиме, при котором получают одномерное отображение сигнала. Различают 2 его разновидности:
  • биометрическое, основной целью которого является определение длины ПЗО (эти данные используют перед операцией по поводу катаракты и для точного расчета искусственного хрусталика),
  • стандартизированное диагностическое – более чувствительный метод, который позволяет выявить и дифференцировать изменения во внутриглазных тканях.

2. УЗИ в B-режиме. Получаемое отображение эхо-сигнала – двухмерное, с горизонтальной и вертикальной осями. В результате лучше визуализируются форма, местоположение и размер патологических изменений. Ультразвуковой датчик контактирует непосредственно с поверхностью глаза (через водяную ванночку или гель). Является наиболее приемлемым способом изучения структур глаза, но малоинформативен для диагностики заболеваний роговицы. Преимущество сканирования в данном режиме – создание реальной двухмерной картины глазного яблока.

3. Ультразвуковая биомикроскопия, используется для визуализации переднего отрезка глаза. Частота ультразвуковых колебаний более высокая, чем у предыдущих способов.

В более редких случаях применяются следующие виды УЗ-обследования:

  1. 1. Иммерсионное УЗИ в B-режиме. Оно делается дополнительно к другим методам исследования для изучения патологий переднего края сетчатки, которые расположены слишком близко при стандартном сканировании в B-режиме. На глаз устанавливают небольшую ванночку, заполненную физиологическим раствором, используемым в качестве промежуточной среды.
  2. 2. Цветная допплерография. Позволяет одновременно получить двухмерное изображение и оценить кровоток в кровеносных сосудах. Так как сосуды имеют маленькие размеры, то точную их локализацию визуализировать не удается. Кровоток кодируется красным (артерии) и синим (вены) цветом. Метод позволяет также определить разрастание кровеносных сосудов в опухолях, оценить патологические отклонения сонной и центральной артерии, вен сетчатки, поражение зрительного нерва из-за недостаточного кровообращения.
  3. 3. Трехмерное ультразвуковое исследование. Трехмерное изображение получают в результате объединения программным путем множества двумерных сканов, а датчик установлен в одном положении, но быстро вращается. Полученный скан можно рассмотреть на различных срезах. Трехмерное УЗИ незаменимо в офтальмоонкологии (для определения объема меланом и оценки эффективности терапии).

На начальной степени катаракты помутнение хрусталика УЗИ выявить не позволяет. При достижении определенной зрелости заболевания исследование показывает различные варианты его эхопрозрачности.

В офтальмологии применяются как специализированные, так и универсальные ультразвуковые аппараты. В последнем случае разрешение датчиков должно быть не менее 5 МГц. Датчики универсальных ультразвуковых приборов имеют большие размеры, что делает невозможным их наложение непосредственно на глазницу из-за ее округлой формы. Поэтому в качестве промежуточной среды могут использоваться жидкостные прокладки, устанавливаемые на глаз. Малая рабочая поверхность специализированных офтальмологических датчиков позволяет визуализировать внутриглазничное пространство.

Достоинства и недостатки

К преимуществам метода ультразвукового исследования глаза относят:

  • Отсутствие тепловых эффектов.
  • Возможность получения информации о состоянии анатомических областей, расположенных рядом с глазницей.
  • Высокая чувствительность при исследовании внутриглазных кровоизлияний и отслоечных процессов, особенно при помутнении оптических сред глаза, когда традиционные офтальмологические средства диагностики не применимы.
  • Точное определение площади отслойки сетчатки.
  • Возможность оценки объема кровоизлияния, согласно которому определяют дальнейшую тактику лечения (2/8 объема стекловидного тела – консервативное лечение, 3/8 – хирургическое вмешательство).

Недостатками УЗИ органов зрения являются следующие:

  • контакт датчика с поверхностью глазного яблока,
  • погрешность измерения, возникающая из-за сжатия роговицы,
  • неточности, связанные с человеческим фактором (не строго перпендикулярное расположение датчика),
  • риск занесения инфекции в глаз.

Особенности обследования у детей

УЗИ глаза проводится в любом возрасте, но у маленьких детей трудно достичь неподвижности и закрытия век. Данная методика обследования помогает выявить врожденные отклонения в органах зрения (ретинопатия недоношенных, колобомы сосудистой оболочки и диска зрительного нерва, другие патологии). У детей младшего и школьного возраста основным показанием для назначения УЗИ является миопия.

У новорожденных детей преломляющая сила оптической системы глаз слабее, чем у взрослых, а размер глазного яблока меньше (16 мм против 24 мм). В норме после рождения имеется «запас» дальнозоркости в 2-5 диоптрий, который постепенно «расходуется» по мере роста детей и глазного яблока. К 10 годам его величина достигает соответствующего размера у взрослого человека, а фокус изображения попадает точно на сетчатку («стопроцентное» зрение).

После 7 лет нагрузка на зрительный аппарат детей сильно возрастает, что чаще всего связано с учебой в школе, отягощенной наследственностью и слабостью аккомодации – способностью хрусталика изменять свою форму для того, чтобы одинаково хорошо видеть вблизи и вдали. Ультразвуковая диагностика является основным методом для определения ПЗО (аксиального размера глаза) у детей при диагностике миопии со спазмом аккомодации. В связи с особенностями роста рекомендуется провести УЗИ ребенку 10 лет для выявления удлинения переднезадней оси глаза.

Если нарушения рефракции были выявлены в более раннем возрасте, то обследование проводится раньше. Отсутствие полноценной коррекции зрения до 10 лет приводит к ярко выраженным функциональным нарушениям зрения и косоглазию. Дополнительно определяют поперечный размер глазного яблока и акустическую плотность склеры.

Замер ПЗО является единственно достоверным методом определения прогрессирования близорукости. Главным критерием служит увеличение переднезадней оси глазного яблока более чем на 0,3 мм в год. При прогрессировании миопии растягиваются все структуры глаза, в том числе сетчатка, что может привести к тяжелым осложнениям – ее отслоению и потере зрения.

Проведение процедуры

Перед проведением процедуры не требуется специальной подготовки. При сканировании орбит глаза у женщин необходимо снять косметику с век и ресниц. Пациента укладывают на спину так, чтобы изголовье находилось возле врача. Под затылок подкладывают валик для того, чтобы голова приняла горизонтальное положение. В некоторых случаях, при необходимости определения смещения каких-либо структур глаза или при наличии пузырька газа в глазнице, пациента обследуют в сидячем положении.

Сканирование производится через нижнее или верхнее закрытое веко, предварительно наносят гель. Во время процедуры врач немного надавливает на датчик, но это безболезненно. Если применяется специализированный датчик, то глаза пациента могут быть открыты (при этом предварительно производится местная анестезия).

Диагностику структур глазного яблока делают в следующем порядке:

  • исследование передней части глазницы (веки, слезные железы и мешок) – обзорное сканирование,
  • для получения среза через переднезаднюю ось (ПЗО) ультразвуковой датчик устанавливают на закрытое верхнее веко над роговицей, в этот момент врачу становятся доступными центральная зона глазного дна, радужка, хрусталик, стекловидное тело (частично), зрительный нерв, жировая клетчатка,
  • для изучения всех сегментов глаза датчик устанавливают под углом в нескольких положениях, при этом пациента просят перевести взгляд вниз в сторону внутреннего и наружного угла глаза,
  • прикладывают ультразвуковую головку на внутреннюю и наружную часть нижнего века (глаза пациента открыты) с целью визуализации верхней части структур глазницы,
  • если необходимо произвести оценку подвижности выявленных образований, то обследуемого человека просят сделать быстрые движения глазными яблоками.

Сканирование сегментов глаза

Длительность процедуры составляет 10-15 минут.

Результаты исследования

Во время проведения обследования специалист ультразвуковой диагностики заполняет протокол с заключением. Расшифровку результатов УЗИ делает лечащий офтальмолог, сравнивая их с табличными нормативными показателями:

Нормальные показатели ультразвукового обследования глаза у взрослых

Нормальные значения ПЗО у детей приведены в таблице ниже. При различных глазных заболеваниях этот показатель варьируется.

Нормальные показатели у детей

В норме изображение глазного яблока характеризуется как округлое образование темного цвета (гипоэхогенное). В переднем отделе визуализируются две светлые полоски, отображающие капсулу хрусталика. Зрительный нерв выглядит как темная, гипоэхогенная полоса в задней части камеры глаза.

Нормальные показатели кровотока при цветной допплерографии

Ниже приведен пример протокола УЗИ глаза.

УЗИ глаза (или офтальмоэхография) – это безопасный, простой, безболезненный и высокоинформативный метод исследования структур глаза, позволяющий получать их изображение на мониторе компьютера в результате отражения ультразвуковых волн высокой частоты от тканей глаза. Если такое исследование дополняется применением цветного допплеровского картрирования сосудов глаза (или ЦДК), то специалист может оценивать и состояние кровотока в них.

В этой статье мы предоставим информацию о сути метода и его разновидностях, показаниях, противопоказаниях, методах подготовки и проведения УЗИ глаза. Эти данные помогут понять принцип такого способа диагностики, и вы сможете задать возникающие вопросы офтальмологу.

УЗИ глаза может назначаться как для выявления многих офтальмологических патологий (даже на начальных стадиях их развития), так и для оценки состояния структур глаза после выполнения хирургических операций (например, после замены хрусталика). Кроме этого, такая процедура дает возможность следить за динамикой развития хронических офтальмологических заболеваний.

Суть и разновидности метода

УЗИ глаза - простой и в то же время высокоинформативный метод диагностики заболеваний глаза.

Принцип проведения офтальмоэхографии основывается на способности испускаемых датчиком ультразвуковых волн отражаться от тканей органа и преобразовываться в изображение, отображаемое на мониторе компьютера. Благодаря этому врач может получать следующую информацию о глазном яблоке:

  • измерять величины глазного яблока в целом;
  • оценивать протяженность стекловидного тела;
  • измерять толщину внутренних оболочек и хрусталика;
  • оценивать протяженность и состояние ретробульбарных тканей;
  • определять величину или выявлять опухоли ресничного отдела;
  • изучать параметры сетчатки и сосудистой оболочки;
  • выявлять и оценивать характеристики (при невозможности определения этих изменений во время );
  • дифференцировать первичную отслойку сетчатки от вторичной, которая была вызвана увеличением опухолей сосудистой оболочки;
  • обнаруживать в глазном яблоке инородные тела;
  • определять присутствие в стекловидном теле помутнений, экссудата или сгустков крови;
  • выявлять .

Такое исследование может выполняться даже при помутнениях оптических сред глаза, которые способны затруднять диагностику при помощи других методов офтальмологического обследования.

Обычно офтальмоэхография дополняется выполнением допплерографии, позволяющей оценивать состояние и проходимость сосудов глазного яблока, скорость и направление кровотока в них. Эта часть исследования дает возможность выявлять отклонения в кровообращении даже на начальных этапах.

Для проведения УЗИ глаза могут применяться следующие разновидности этой методики:

  1. Одномерная эхография (или режим А) . Этот способ исследования используется для определения размеров глаза или его отдельных структур и оценки состояния орбит. При проведении этой методики в глаз больного закапывается раствор и датчик аппарата устанавливают непосредственно на глазное яблоко. В результате обследования получается график, отображающий необходимые для диагностики параметры глаза.
  2. Двухмерная эхография (или режим В) . Такой метод позволяет получать двухмерную картину и характеристики строения внутренних структур глазного яблока. Для его выполнения не требуется специальная подготовка глаза, а датчик УЗ-аппарата устанавливается на закрытое веко обследуемого. Само исследование занимает не более 15 минут.
  3. Комбинация режимов А и В . Такое сочетание вышеописанных методик дает возможность получать более детальную картину состояния глазного яблока и повышает информативность диагностики.
  4. Ультразвуковая биомикроскопия . Такой метод подразумевает цифровую обработку получаемых аппаратом эхосигналов. В результате качество изображения, выводящегося на монитор, повышается в несколько раз.

Допплеровское исследование сосудов глаза выполняется по следующим методикам:

  1. Трехмерная эхография . Такой способ исследования дает возможность получать трехмерное изображение структур глаза и его сосудов. Некоторые современные аппараты позволяют получать картину в режиме реального времени.
  2. Энергетическая допплерография . Благодаря этой методике специалист может изучать состояние сосудов и оценивать амплитудные и скоростные величины кровотока в них.
  3. Импульсно-волновая допплерография . Этот способ исследования проводит анализ шумов, возникающих при кровотоке. В результате врач может более точно оценивать его скорость и направление.

При проведении ультразвукового дуплексного сканирования объединяются все возможности как обычного УЗИ, так и допплеровского исследования. Такой метод обследования одномоментно предоставляет данные не только о размерах и структуре глаза, но и о состоянии его сосудов.

Показания


УЗИ глаза - один из методов диагностики, рекомендованных больным с миопией или дальнозоркостью.

УЗИ глаза может назначаться в следующих случаях:

  • высокие степени или дальнозоркости;
  • глаукома;
  • отслойка сетчатки;
  • патологии глазных мышц;
  • подозрение на инородное тело;
  • заболевания зрительного нерва;
  • травмы;
  • сосудистые патологии глаз;
  • врожденные аномалии строения органов зрения;
  • способные приводить к появлению офтальмологических патологий хронические заболевания: , сопровождающиеся гипертензией заболевания почек;
  • контроль эффективности лечения онкологических патологий глаз;
  • контроль эффективности терапии при сосудистых изменениях глазного яблока;
  • оценка эффективности проведенных офтальмологических операций.

Допплеровское УЗИ глаза показано при следующих патологиях:

  • спазмирование или непроходимость артерии сетчатки;
  • тромбоз глазных вен;
  • сужения сонной артерии, приводящие к нарушению кровотока в глазных артериях.

Противопоказания

УЗИ глаза является абсолютно безопасной процедурой и не имеет противопоказаний.

Подготовка пациента

Проведение офтальмоэхографии не требует особой подготовки больного. При его назначении врач обязательно объясняет пациенту суть и необходимость выполнения этого диагностического исследования. Особенное внимание уделяется психологической подготовке маленьких детей – ребенок должен знать, что эта процедура не причинит ему боли, и правильно вести себя во время УЗ-сканирования.

При необходимости использования во время исследования режима А перед обследованием врач обязательно уточняет у пациента данные о наличии у него аллергической реакции на местные анестетики и выбирает безопасный для больного препарат.

УЗИ глаза может выполняться как в условиях поликлиники, так и в стационаре. Пациент должен взять с собой направление на исследование и результаты ранее выполненных офтальмоэхографий. Женщинам перед процедурой не следует пользоваться декоративной косметикой для глаз, так как во время обследования на верхнее веко будет наноситься гель.

Как проводится исследование

Офтальмоэхография выполняется в специально оборудованном кабинете следующим образом:

  1. Пациент усаживается на кресло перед врачом.
  2. Если для обследования применяется режим А, то в глаз больного закапывается раствор местного анестетика. После начала его действия врач аккуратно устанавливает датчик аппарата непосредственно на поверхность глазного яблока и перемещает необходимым образом.
  3. Если исследование выполняется в режиме В или проводится допплерография, то обезболивающие капли не применяются. Пациент закрывает глаза и на его верхние веки наносится гель. Врач устанавливает датчик на веко больного и выполняет исследование на протяжении 10-15 минут. После этого гель с век удаляется салфеткой.

После процедуры специалист УЗ-диагностики составляет заключение и выдает его на руки пациенту или отправляет лечащему врачу.


Показатели нормы

Расшифровку результатов офтальмоэхографии проводит специалист УЗ-диагностики и лечащий врач больного. Для этого проводится сравнение полученных результатов с показателями нормы:

  • стекловидное тело – прозрачное и не имеет включений;
  • объем стекловидного тела – около 4 мл;
  • передне-задняя ось стекловидного тела – около 16,5 мм;
  • хрусталик – прозрачен, невидим, его задняя капсула хорошо просматривается;
  • длина оси глаза – 22,4-27,3 мм;
  • толщина внутренних оболочек – 0,7-1 мм;
  • ширина гипоэхогенной структуры зрительного нерва – 2-2,5 мм;
  • преломляющая сила глаза при эмметропии – 52,6-64,21 D.

К какому врачу обратиться

УЗИ глаза может назначаться офтальмологом. При некоторых хронических заболеваниях, вызывающих изменения в состоянии глазного яблока и глазного дна, такая процедура может рекомендоваться врачами других специализаций: терапевтом, невропатологом, нефрологом или кардиологом.

УЗИ глаза является высокоинформативной, неинвазивной, безопасной, безболезненной и простой в выполнении диагностической процедурой, помогающей ставить верный диагноз при многих офтальмологических патологиях. При необходимости это исследование может повторяться многократно и не требует соблюдения каких-либо перерывов. Для проведения УЗИ глаза пациенту не нужно проводить специальную подготовку и для назначения такого обследования не существует никаких противопоказаний и возрастных ограничений.

Ткани глазного яблока - совокупность акустически разнородных сред. При попадании ультразвуковой волны на границу раздела двух сред происходит её преломление и отражение. Чем больше различаются акустические сопротивления (импедансы) пограничных сред, тем большая часть падающей волны отражается. На явлении отражения ультразвуковых волн основано определение топографии нормальных и патологически изменённых биосред.

УЗИ используется для диагностики прижизненных измерений глазного яблока и его анатомо-оптических элементов. Это высокоинформативный инструментальный метод, дополнение к общепризнанным клиническим методам офтальмологической диагностики. Как правило, эхографии должно предшествовать традиционное анамнестическое и клиникоофтальмологическое обследование больного.

Исследование эхобиометрических (линейных и угловых величин) и анатомо-топографических (локализация, плотность) характеристик проводят по основным показаниям. К ним относят следующее.

  • Необходимость измерения толщины роговицы, глубины передней и задней камер, толщины хрусталика и внутренних оболочек глаза, протяжённости СТ , различных других внутриглазных дистанций и величины глаза в целом (например, при инородных телах в глазу, субатрофии глазного яблока, глаукоме, близорукости, при расчёте оптической силы интраокулярных линз (ИОЛ)).
  • Изучение топографии и строения угла передней камеры (УПК). Оценка состояния хирургически сформированных путей оттока и УПК после антиглаукомных вмешательств.
  • Оценка положения ИОЛ (фиксация, дислокация, сращения).
  • Измерение протяжённости ретробульбарных тканей в различных направлениях, толщины зрительного нерва и прямых мышц глаза.
  • Определение величины и изучение топографии патологических изменений, в том числе новообразований глаза, ретробульбарного пространства; количественная оценка этих изменений в динамике. Дифференциация различных клинических форм экзофтальма.
  • Оценка высоты и распространённости отслойки цилиарного тела, сосудистой и сетчатой оболочек глаза при затруднённой офтальмоскопии.
  • Выявление деструкции, экссудата, помутнений, сгустков крови, шварт в СТ, определение особенностей их локализации, плотности и подвижности
  • Выявление и определение локализации внутриглазных инородных тел, в том числе клинически невидимых и рентгенонегативных, а также оценка степени их капсулированности и подвижности, магнитных свойств.

Принцип работы

Эхографическое исследование глаза проводят контактным или иммерсионным способами.

Контактный способ

Контактную одномерную эхографию проводят следующим образом. Больного усаживают в кресло слева и несколько спереди от диагностического ультразвукового прибора лицом к врачу, сидящему перед экраном прибора вполуоборот к больному. В некоторых случаях проведение УЗИ возможно при положении больного лёжа на кушетке лицом вверх (врач располагается у изголовья больного).

Перед исследованием в конъюнктивальную полость исследуемого глаза инстиллируют анестетик. Правой рукой врач приводит ультразвуковой зонд, стерилизованный 96% этанолом, в соприкосновение с исследуемым глазом пациента, а левой регулирует работу прибора. Контактной средой является слёзная жидкость.

Акустическое исследование глаза начинают с обзора, используя зонд с диаметром пьезопластины 5 мм, а окончательное заключение дают после детального осмотра при помощи зонда с диаметром пьезопластины 3 мм.

Иммерсионный способ

Иммерсионный способ акустического исследования глаза предполагает наличие слоя жидкости или геля между пьезопластиной диагностического зонда и исследуемым глазом. Чаще всего этот способ реализуют с помощью ультразвуковой аппаратуры, основной на использовании В-метода эхографии. Сканирующий по различной траектории диагностический зонд «плавает» в иммерсионной среде (дегазированная вода, изотонический раствор натрия хлорида), находящейся в специальной насадке, которая устанавливается на глаз исследуемого. Диагностический зонд также может находиться в кожухе со звукопрозрачной мембраной, которая приводится в соприкосновение с прикрытыми веками пациента, сидящего в кресле. Инстилляционная анестезия в этом случае не нужна.

Методика исследования

  • Одномерная эхография (А-метод) - довольно точный метод, позволяющий в графическом режиме выявить разнообразные патологические изменения и образования, а также измерять размеры глазного яблока и его отдельные анатомо-оптические элементы и структуры. Метод модифицирован в отдельное специальное направление - ультразвуковую биометрию .
  • Двухмерная эхография (акустическое сканирование, В-метод) - основана на преобразовании амплитудной градации эхосигналов в светлые точки различной степени яркости, формирующие изображение сечения глазного яблока на мониторе.
  • УБМ . Цифровые технологии позволили разработать метод УБМ, основанный на цифровом анализе сигнала каждого пьезоэлемента датчика. Разрешающая способность УБМ при аксиальной плоскости сканирования составляет 40 мкм. Для такого разрешения используют датчики 50-80 МГц.
  • Трёхмерная эхография . Трёхмерная эхография воспроизводит объёмное изображение при сложении и анализе множества плоскостных эхограмм или объёмов во время движения плоскости сканирования по вертикали-горизонтали или концентрически вокруг её центральной оси. Получение объёмного изображения происходит либо в режиме реального времени (интерактивно), либо отсроченно в зависимости от датчиков и мощности процессора.
  • Энергетическая допплерография (энергетическое допплеровское картирование) - способ анализа потока крови, заключается в отображении многочисленных амплитудных и скоростных характеристик эритроцитов, так называемых энергетических профилей.
  • Импульсно-волновая допплерография позволяет объективно судить о скорости и направлении кровотока в конкретном сосуде, исследовать характер шумов.
  • Ультразвуковое дуплексное исследование. Объединение в одном приборе импульсной допплерографии и сканирования в режиме серой шкалы позволяет одновременно оценивать состояние сосудистой стенки и регистрировать гемодинамические показатели. Основной критерий оценки гемодинамики - линейная скорость кровотока (см/с).

Алгоритм акустического исследования глаза и орбиты заключается в последовательном применении принципа взаимодополняемости (комплементарности) обзорной, локализационной, кинетической и квантитативной эхографии.

  • Обзорную эхографию выполняют, чтобы выявить асимметрию и очаг патологии.
  • Локализационная эхография позволяет с помощью эхобиометрии измерять различные линейные и угловые параметры внутриглазных структур и формирований и определять их анатомо-топографические соотношения.
  • Кинетическая эхография состоит из серии повторных УЗИ после быстрых движений глаза обследуемого (изменения направления взгляда пациента). Кинетическая проба позволяет установить степень подвижности обнаруженных формирований.
  • Квантитативная эхография даёт косвенное представление об акустической плотности изучаемых структур, выраженной в децибелах. Принцип основан на постепенном уменьшении эхосигналов до полного их гашения.

Задача предварительного УЗИ - визуализация основных анатомо-топографических структур глаза и орбиты. С этой целью в режиме серой шкалы сканирование проводят в двух плоскостях:

  • горизонтальной (аксиальной), проходящей через роговицу, глазное яблоко, внутреннюю и наружную прямые мышцы, зрительный нерв и вершину орбиты;
  • вертикальной (сагиттальной), проходящей через глазное яблоко, верхнюю и нижнюю прямые мышцы, зрительный нерв и вершину орбиты.

Обязательное условие, обеспечивающее наибольшую информативность УЗИ, - ориентация зонда под прямым (или близким к прямому) углом до отношению к исследуемой структуре (поверхности). При этом регистрируется идущий от исследуемого объекта эхосигнал максимальной амплитуды. Сам зонд не должен оказывать давления на глазное яблоко.

При осмотре глазного яблока необходимо помнить о его условном разделении на четыре квадранта (сегмента): верхне- и нижненаружные, верхне- и нижневнутренние. Особо выделяют центральную зону глазного дна с расположенными в ней ДЗН и макулярной областью.

Характеристики в норме и патологии

При прохождении плоскости сканирования ориентировочно вдоль переднезадней оси глаза получают эхосигналы от век, роговицы, передней и задней поверхности хрусталика, сетчатки. Прозрачный хрусталик акустически не выявляется. Визуализируется более чётко его задняя капсула в виде гиперэхогенной дуги. СТ в норме, акустически прозрачно.

При сканировании сетчатка, хориоидея и склера фактически сливаются в единый комплекс. При этом внутренние оболочки (сетчатая и сосудистая) имеют чуть меньшую акустическую плотность, чем гиперэхогенная склера, а их толщина вместе составляет 0,7-1,0 мм.

В этой же плоскости сканирования видна воронкообразная ретробульбарная часть, ограниченная гиперэхогенными костными стенками орбиты и заполненная мелкозернистой жировой клетчаткой средней или несколько повышенной акустической плотности. В центральной зоне ретробульбарного пространства (ближе к носовой части) визуализируется зрительный нерв в виде гипоэхогенной трубчатой структуры шириной около 2,0-2,5 мм, исходящей из глазного яблока с носовой стороны на расстоянии 4 мм от его заднего полюса.

При соответствующей ориентации датчика, плоскости сканирования и направления взгляда получают изображение прямых мышц глаза в виде однородных трубчатых структур с меньшей акустической плотностью, чем жировая клетчатка, толщиной между фасциальными листками 4,0-5,0 мм.

При подвывихе хрусталика наблюдают различную степень смещения одного из его экваториальных краёв в СТ. При вывихе хрусталик выявляется в различных слоях СТ или на глазном дне. Во время кинетической пробы хрусталик либо свободно перемещается, либо остаётся фиксированным к сетчатке или фиброзным тяжам СТ. При афакии во время УЗИ наблюдают дрожание потерявшей опору радужки.

При замене хрусталика искусственной ИОЛ за радужкой визуализируется образование высокой акустической плотности.

В последние годы большое значение придают эхографическому исследованию структур УПК и иридоцилиарной зоны в целом. С помощью УБМ выделено три основных анатомо-топографических типа строения иридоцилиарной зоны в зависимости от вида клинической рефракции.

  • Гиперметропический тип характеризуется выпуклым профилем радужки, малым иридокорнеальным углом (17±4,05°), характерным переднемедиальным прикреплением корня радужки к цилиарному телу, обеспечивающим клювовидную форму УПК с узким входом (0,12 мм) в бухту угла и очень близким расположением радужки с трабекулярной зоной. При таком анатомо-топографическом типе возникают благоприятные условия для механической блокады УПК тканью радужки.
  • Миопические глаза с обратным профилем радужки, иридокорнеальным углом (36,2+5,25°), большой площадью контакта пигментного листка радужки с цинновьми связками и передней поверхностью хрусталика имеют предрасположенность к развитию пигментного дисперсного синдрома.
  • Эмметропические глаза - наиболее часто встречаемый тип, характеризуются прямым профилем радужки со средней величиной УПК 31,13±6,24°, глубиной задней камеры 0,56±0,09 мм, относительно широким входом в бухту УПК - 0,39±0,08 мм, переднезадней осью - 23,92+1,62 мм. При такой конструкции иридоцилиарной зоны нет явной предрасположенности к нарушениям гидродинамики, т.е. нет анатомо-топографических условий для развития зрачкового блока и пигментно-дисперсного синдрома.

Изменение акустических характеристик СТ возникает вследствие дегенеративно-дистрофических, воспалительных процессов, кровоизлияний и пр. Помутнения могут быть плавающими и фиксированными; точечными, плёнчатыми, в виде глыбок и конгломератов. Степень помутнений варьирует от слабозаметных до грубых шварт и выраженного сплошного фиброза.

При интерпретации данных УЗИ гемофтальма следует помнить о стадиях его течения

  • Стадия I - соответствует процессам гемостаза (2-3 сут с момента кровоизлияния) и характеризуется наличием в СТ свернувшейся крови умеренной акустической плотности.
  • Стадия II - стадия гемолиза и диффузии кровоизлияния, сопровождается снижением его акустической плотности, размытостью контуров. В процессе рассасывания на фоне гемолиза и фибринолиза появляется мелкоточечная взвесь, часто отграниченная от неизменённой части СТ тонкой плёнкой. В ряде случаев в стадии гемолиза эритроцитов УЗИ оказывается неинформативным, так как элементы крови соразмерны длине ультразвуковой волны и зона кровоизлияния не дифференцируется.
  • Стадия III - стадия начальной соединительнотканной организации, наступает в случаях дальнейшего развития патологического процесса (повторные кровоизлияния) и характеризуется наличием локальных зон повышенной плотности.
  • Стадия IV - стадия развитой соединительнотканной организации или швартообраэоваиия, характеризуется формированием шварт и плёнок высокой акустической плотности.

При отслойке СТ эхографичеcки визуализируется мембрана повышенной акустической плотности, соответствующая её плотному пограничному слою, отделённая от сетчатки акустически прозрачным пространством.

Клиническая симптоматика, указывающая на вероятность отслойки сетчатки - одно из основных показаний к УЗИ. При A-методе эхографии диагноз отслойки сетчатки основывается на стойкой регистрации изолированного эхосигнала от отслоенной сетчатки, отделяющегося участком изолинии от эхосигналов комплекса склера плюс ретробульбарные ткани. По этому показателю судят о высоте отслойки сетчатки. При В-методе эхографии отслойка сетчатки визуализируется в виде плёнчатого образования в СТ, как правило, имеющего контакт с оболочками глаза в проекции зубчатой линии и ДЗН. В отличие от тотальной при локальной отслойке сетчатки патологический процесс занимает определённый сегмент глазного яблока или его часть. Отслойка может быть плоской, высотой 1-2 мм. Локальная отслойка может быть и более высокой, иногда куполообразной, в связи с чем возникает необходимость её дифференциации от кисты сетчатки.

Одно из важных показаний к эхографическому исследованию - развитие отслойки сосудистой оболочки и цилиарного тела, в некоторых случаях возникающей после антиглаукомных операций, экстракции катаракты, контузии и проникающих ранений глазного яблока, при увеитах. В задачу исследователя входит определение квадранта её расположения и динамики течения. Для обнаружения отслойки цилиарного тела производят сканирование крайней периферии глазного яблока в различных проекциях при максимальном угле наклона датчика без водной насадки. При наличии датчика с водной насадкой исследуют передние отделы глазного яблока в поперечных и продольных срезах.

Отслоённое цилиарное тело визуализируется как плёнчатая структура, расположенная на 0,5-2,0 мм глубже склеральной оболочки глаза в результате распространения под него акустически гомогенного транссудата или водянистой влаги.

Ультразвуковые признаки отслойки сосудистой оболочки довольно специфичны: визуализируется от одного до нескольких чётко контурированных плёнчатых бугров различной высоты и протяжённости, при этом между отслоёнными участками всегда есть перемычки, где сосудистая оболочка по-прежнему фиксирована к склере: при кинетической пробе пузыри неподвижны. В отличие от отслойки сетчатки контуры бугров обычно не примыкают к зоне ДЗН.

Отслойка сосудистой оболочки может занимать все сегменты глазного яблока от центральной зоны до крайней периферии. При резко выраженной высокой отслойке пузыри хориоидеи сближаются друг с другом и дают картину «целующейся» отслойки сосудистой оболочки.

Необходимое условие для визуализации инородного тела - различие в акустической плотности материала инородного тела и окружающих его тканей. При A-методе на эхограмме возникает сигнал от инородного тела, по которому можно судить о его локализации в глазу. Важный для дифференциальной диагностики критерий - немедленное исчезновение эхосигнала с инородного тела при минимальном изменении угла зондирования. Благодаря своему составу, форме и размерам инородные тела могут вызывать различные ультразвуковые эффекты, например «хвост кометы». Для визуализации осколков в переднем отделе глазного яблока лучше использовать датчик с водной насадкой.

Как правило, в нормальном состоянии ДЗН при УЗИ не дифференцируется. Возможность оценки состояния ДЗН как в норме, так и при патологий расширилась с внедрением методов цветового допплеровского картирования и энергетического картирования.

При застойных явлениях вследствие невоспалительного отёка на В-сканограммах ДЗН увеличивается в размерах, проминирует в полость СТ. Акустическая плотность отёчного диска низкая, лишь поверхность выделяется в виде гиперэхогенной полосы.

Среди внутриглазных новообразований , создающих в глазу эффект «плюс-ткани», с наибольшей частотой встречаются меланома сосудистой оболочки и ресничного тела (у взрослых) и ретинобластома (РБ) (у детей). При A-методе исследования новообразование выявляется в виде комплекса эхосигналов, сливающихся друг с другом, но никогда не снижающихся до изолинии, что отражает определённое акустическое сопротивление однородного морфологического субстрата новообразования. Развитие в меланоме участков некроза, сосудов, лакун эхографически верифицируется увеличением разницы в амплитудах эхосигналов. При В-методе основной признак меланомы - присутствие на сканограмме чёткого контура, соответствующего границам опухоли, при этом акустическая плотность самого образования может быть различной степени гомогенности.

При акустическом сканировании определяют локализацию, форму, чёткость контуров, размеры опухоли, количественно оценивают её акустическую плотность (высокая, низкая), качественно - характер распределения плотности (гомогенный или гетерогенный).

Таким образом, возможности применения диагностического ультразвука в офтальмологии постоянно расширяются, что обеспечивает динамизм и преемственность развития данного направления.

Ультразвуковая и оптическая биометрия глаза - распространенная процедура в офтальмологии, которая позволяет вычислить анатомические характеристики глаза без хирургического вмешательства. Процедура используется для диагностики ряда болезней от обычной миопии (близорукости) до катаракты и послеоперационной диагностики и часто помогает спасти зрение.

В зависимости от типа волн, которыми проводят измерения, биометрия делится на ультразвуковую и оптическую.

Для чего нужна биометрия?

  • Подбор индивидуальных контактных линз.
  • Контроль над прогрессирующей миопией.
  • Диагностика:
    • кератоконуса (истончение и деформация роговицы);
    • послеоперационной кератэктазии;
    • роговицы после пересадки.

Поскольку миопия особенно быстро прогрессирует у детей независимо от средств коррекции, биометрическое исследование глаза позволяет вовремя определить любые отклонения от нормы и изменить лечение. Показаниями к биометрии являются:


Назначается процедура пациентам, у которых проявляются такие патологии, как помутнение роговицы.
  • быстрое ухудшение зрения;
  • помутнение и деформация роговицы;
  • двоение, искривление изображения;
  • тяжесть при смыкании век;
  • головные боли и быстрая утомляемость глаз.

Виды биометрии и ее проведение

Ультразвуковая диагностика

Для расчета анатомических параметров с помощью ультразвука нужен непосредственный контакт зонда с кожей век. Пациент при этом должен лежать неподвижно, чтобы волны проходили должным образом, а картинка был четкой. Для улучшения проводимости на веки наносится гель. Ультразвуковая биометрия - более старый способ диагностики. Преимущество техники - мобильность аппаратуры, что особенно важно для пациентов, неспособных двигаться.

Оптическая техника

Методика существенно отличается, так как в ней используют принцип интерферометрии, то есть измерение проводится за счет разделенных пучков электромагнитного излучения. Она не требует контакта с глазом пациента, к тому же считается более точным способом диагностики, чем ультразвуковая. Некоторые устройства используют лазерные инфракрасные лучи длиной волн в 780 нм. Расслоение излучения между светом, отраженным в слезной пленке, и пигментным эпителием на сетчатке улавливаются чувствительным сканером.

Оптический метод биометрии не требует усилий или дополнительной осторожности со стороны врача. После выравнивания аппаратуры по глазу дальнейшие измерения проводятся автоматически.


Оптическая биометрия глаза – бесконтактный способ диагностики, который исключает человеческий фактор.

Оптический метод считается более прогрессивным и простым, чем ультразвуковая биометрика, за счет исключения человеческого фактора. Техника более комфортна, так как пациент не терпит неудобства из-за контакта глаза с аппаратом. На некоторых устройствах ультразвуковая биометрия комбинируется с оптической для достижения более точных измерений вне зависимости от диагноза.

Расшифровка показателей

После сканирования врач получает такие данные:

  • величина длины глаза и передне-задней оси;
  • радиус кривизны передней поверхности роговицы (кератометрия);
  • глубина передней камеры;
  • диаметр роговицы;
  • расчет оптической силы интраокулярной линзы (ИОЛ);
  • толщина роговицы (пахиметрия), хрусталика и сетчатки;
  • расстояние между лимбами;
  • изменения оптической оси;
  • величина зрачка (пупилометрия).

Особенно важны измерения толщины роговицы и радиуса ее кревизны, так как они позволяют диагностировать кератоконус и кератоглобус - изменения в роговице, из-за которых она становится конусообразной или шарообразной. Биометрия позволяет вычислить, насколько отличается толщина при этих заболеваниях от центра к периферии и назначить правильную коррекцию.

Проведение процедуры дает точные показатели состояния органов зрения и помогает выявить патологии, например, такие как близорукость.

У здорового человека толщина роговицы должна колебаться от 410 до 625 мкм, при этом снизу она толще, чем сверху. Изменения толщины могут говорить о заболеваниях эндотелия роговицы или о других генетических патологиях глаза. Обычно глубина передней камеры при кератоглобусе увеличивается на несколько миллиметров, но расшифровка данных с современных аппаратов дает точность до 2 микрометров. При миопии биометрия диагностирует удлинение сагиттальной оси разной степени.