Что такое биотехнология? История и достижения биотехнологии. Понятие биотехнологии

Биотехнология - это сознательное производство необходимых человеку продуктов и материалов с помощью живых организмов и биологических процессов .

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду.

Объектами биотехнологии являются многочисленные представители групп живых организмов - микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Одним из важнейших направлений современной биотехнологии является также использование биологических методов борьбы с загрязнением окружающей среды (биологическая очистка сточных вод, загрязненной почвы и т. п.).

Так, для извлечения металлов из сточных вод могут широко использоваться штаммы бактерий, способные накапливать уран, медь, кобальт. Другие бактерии родов Rhodococcus и Nocardia с успехом применяют для эмульгирования и сорбции углеводородов нефти из водной среды. Они способны разделять водную и нефтяную фазы, концентрировать нефть, очищать сточные воды от примесей нефти. Ассимилируя углеводороды нефти, такие микроорганизмы преобразуют их в белки, витамины из группы В и каротины.

Некоторые из штаммов галобактерий с успехом применяют для удаления мазута с песчаных пляжей. Получены также генно-инженерные штаммы, способные расщеплять октан, камфару, нафталин, ксилол, эффективно утилизировать сырую нефть.

Большое значение имеет использование методов биотехнологии для защиты растений от вредителей и болезней.

Биотехнология проникает в тяжелую промышленность, где микроорганизмы используются для добычи, превращения и переработки природных ископаемых. Уже в древности первые металлурги получали железо из болотных руд, производимых железобактериями, которые способны концентрировать железо. Теперь разработаны способы бактериальной концентрации ряда других ценных металлов: марганца, цинка, меди, хрома и др. Эти методы используются для разработки отвалов старых рудников и бедных месторождений, где традиционные методы добычи экономически невыгодны.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача - она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем - непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород - самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях.

Имеете ли вы представление, что такое биотехнологии?

Безусловно, вы, что то о них слышали. Это инновационное направление в современной биологии, которое стоит в одном ряду с такими науками как математика или физика.

Биотехнология занимается созданием нужных человеку продуктов и материалов с помощью живых культур и микроорганизмов таких как, дрожи, споры грибов, культивируемые клетки растений и животных и др. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе. Биоинженеры, имеют дело с живыми системами природы, используют их возможности для решения медицинских задач, генной инженерии, сельского хозяйства, химической отрасли, косметической индустрии и пищевой промышленности. Биотехнология – это наука на стыке смежных отраслей.

Интересно, что проникновение биотехнологий в экономику мирового хозяйства отражается в том, что сформировались новые термины для обозначения глобальности данного процесса. В промышлености даже появились разноцветные биотехнологии:

  • "красная" биотехнология – биотехнология, связанная с обеспечением здоровья человека и потенциальной коррекцией его генома, а также с производством биофармацевтических препаратов (протеинов, ферментов, антител);
  • "зеленая" биотехнология - направлена на разработку и создание генетически модифицированных (ГМ) растений, устойчивых к биотическим и абиотическим стрессам, определяет современные методы ведения сельского и лесного хозяйства;
  • "белая" - промышленная биотехнология, объединяющая производство биотоплива, биотехнологии в пищевой, химической и нефтеперерабатывающей промышленности;
  • "серая" - связана с природоохранной деятельностью, биоремедиацией;
  • "синяя" биотехнология – связана с использованием морских организмов и сырьевых ресурсов.

Появились и новые профессии: биофармаколог, бионик, архитектор живых систем, урбанист-эколог и другие. Ну а экономика, объединяющая все эти инновационные области, стала назваться «биоэкономика».

Сегодня наша страна по уровню производства на основе высоких биотехнологий отстаёт от стран, являющихся технологическими лидерами в этой области. Политика нашего государства по импортозамещению направлена как раз на то, чтобы не только создавать новые биотехнологии, но осуществлять к нам в страну трансфер зарубежных решений, уже получившие признание в мире.

Трансфер технологий сопровождается поиском самых новых и прогрессивных решений. Но есть один важный момент, помимо факта прогрессивности технологии сегодня, нужно уметь предсказывать ее перспективы для прогресса будущего.

Иногда для таких стратегических предсказаний трудятся целые научно- исследовательские институты, группы ученых и практиков. А иногда, перспективность и прорывной характер технологии способен предсказать всего один человек. Такой как Стив Джобс или Бил Гейц.

В сфере биотехнологий тоже имеются свои проницательные лидеры из сферы бизнеса. Один из них Яковлев Максим Николаевич , генеральный директор представительства биотехнологической корпорации Unhwa, Южная Корея, расположенного в городе Санкт – Петербурге.

Биотехнология, которой Максим Яковлев определил прорывное будущее в разных сегментах экономики находится в сфере культивирования растительных клеток, обладающих функциями «естественных природных биофабрик» по производству ценных ингредиентов из любых растений, в том числе и уникальных.

Эта перспективная биотехнология, по мнению бизнесмена, способна из одной выделенной клетки растения создавать натуральное питание прямо на борту космических кораблей, выращивать плоды овощей и фруктов с нужными характеристиками и размерами, создавать экосистем других планет и питание для человека в промышленных масштабах из любого растения без выращивания этого растений на живой земле.

Возможно такие перспективы биотехнологии еще трудно осознать и принять как возможное. Но все мы знаем, что есть люди способны видеть дальше масс, потому что, они сами уже живут в будущем и зовут нас за собой.



Добавить свою цену в базу

Комментарий

Впервые термин «биотехнология» применил венгерский инженер Карл Эреки в 1917 году. Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки (микроорганизмы) и некоторые ферменты, способствующие протеканию ряда химических процессов.

Так, в 1814 году петербургский академик К. С. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья (до середины XIX века сахар получали только из сахарного тростника). В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов.

В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки использовать ферменты в текстильной промышленности.

В 1916–1917 годах русский биохимик А. М. Коленев пытался разработать способ, который позволил бы управлять действием ферментов в природном сырье при производстве табака.

Огромный вклад в дело практического использования достижений биохимии внёс академик А. Н. Бах, создавший важное прикладное направление биохимии – техническую биохимию. А. Н. Бах и его ученики разработали множество рекомендаций по улучшению технологий обработки самого различного биохимического сырья, совершенствованию технологий хлебопечения, пивоварения, виноделия, производства чая и табака и т. п., а также рекомендации по повышению урожая культурных растений путём управления протекающими в них биохимическими процессами.

Все эти исследования, а также прогресс химической и микробиологической промышленности и создание новых промышленных биохимических производств (чая, табака и т. п.) были важнейшими предпосылками возникновения современной биотехнологии.

В производственном отношении основой биотехнологии в процессе её формирования стала микробиологическая промышленность. За послевоенные годы микробиологическая промышленность приобрела принципиально новые черты: микроорганизмы стали использовать не только как средство повышения интенсивности биохимических процессов, но и как миниатюрные синтетические фабрики, способные синтезировать внутри своих клеток ценнейшие и сложнейшие химические соединения. Перелом был связан с открытием и началом производства антибиотиков.

Первый антибиотик – пенициллин – был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики (эта работа продолжается и поныне). С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине.

Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно (недаром химический синтез тетрациклина советским учёным академиком М. М. Шемякиным считается одним из крупнейших достижений органического синтеза). И тогда решили для промышленного производства лекарственных препаратов использовать микроорганизмы, синтезирующие пенициллин и другие антибиотики. Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза.

Виды биотехнологии

Биоинженерия

Биоинженерия или биомедицинская инженерия – это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженерия/биомедицинская инженерия – это применение технических подходов для решения медицинских проблем в целях улучшения охраны здоровья. Эта инженерная дисциплина направлена на использование знаний и опыта для нахождения и решения проблем биологии и медицины.

Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач.

Среди важных достижений биоинженерии можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов («drug design»).

Биомедицина

Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Биомедицина включает накопленные сведения и исследования, в большей или меньшей степени общие медицине, ветеринарии, стоматологии и фундаментальным биологическим наукам, таким, как химия, биологическая химия, биология, гистология, генетика, эмбриология, анатомия, физиология, патология, биомедицинский инжиниринг, зоология, ботаника и микробиология.

Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры. В мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся адресная доставка лекарств к больным клеткам, лаборатории на чипе, новые бактерицидные средства.

Биофармакология

Раздел фармакологии, который изучает физиологические эффекты, производимые веществами биологического и биотехнологического происхождения. Фактически, биофармакология – это плод конвергенции двух традиционных наук – биотехнологии, а именно, той её ветви, которую именуют «красной», медицинской биотехнологией, и фармакологии, ранее интересовавшейся лишь низкомолекулярными химическими веществами, в результате взаимного интереса.

Объекты биофармакологических исследований – изучение биофармацевтических препаратов, планирование их получения, организация производства. Биофармакологические лечебные средства и средства для профилактики заболеваний получают с использованием живых биологических систем, тканей организмов и их производных, с использованием средств биотехнологии, то есть лекарственные вещества биологического и биотехнологического происхождения.

Биоинформатика

Совокупность методов и подходов, включающих в себя:

  1. математические методы компьютерного анализа в сравнительной геномике (геномная биоинформатика);
  2. разработка алгоритмов и программ для предсказания пространственной структуры белков (структурная биоинформатика);
  3. исследование стратегий, соответствующих вычислительных методологий, а также общее управление информационной сложности биологических систем.

В биоинформатике используются методы прикладной математики, статистики и информатики. Биоинформатика используется в биохимии, биофизике, экологии и в других областях.

Бионика

Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги. Проще говоря, бионика – это соединение биологии и техники. Бионика рассматривает биологию и технику совсем с новой стороны, объясняя, какие общие черты и какие различия существуют в природе и в технике.

Различают :

  • биологическую бионику, изучающую процессы, происходящие в биологических системах;
  • теоретическую бионику, которая строит математические модели этих процессов;
  • техническую бионику, применяющую модели теоретической бионики для решения инженерных задач.

Бионика тесно связана с биологией, физикой, химией, кибернетикой и инженерными науками: электроникой, навигацией, связью, морским делом и другими.

Биоремедиация

Комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов.

Клонирование

Появление естественным путём или получение нескольких генетически идентичных организмов путём бесполого (в том числе вегетативного) размножения. Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул (молекулярное клонирование). Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток – клон.

Генетическая инженерия

Суть генетической инженерии заключается в искусственном создании генов с нужными свойствами и введение их в соответствующую клетку. Перенос гена осуществляет вектор (рекомбинантная ДНК) – специальная молекула ДНК, сконструированная на основе ДНК вирусов или плазмид, которая содержит нужный ген, транспортирует его в клетку и обеспечивает его встраивание в генетический аппарат клетки.

Для маркировки определенных клеток организмов в молекулярно-генетических исследованиях используют ген GFP, выделенный из медузы. Он обеспечивает синтез флуоресцентного белка, который светится в темноте.

Генетическая инженерия широко используется как в научных исследованиях, так и в новейших методах селекции.

Биотехнология – это совокупность промышленных методов, которые применяют для производства различных веществ с использованием живых организмов, биологических процессов или явлений. Традиционная биотехнология основана на явлении ферментации – использовании в производственных процессах ферментов микроорганизмов. Клеточная инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии культивирования клеток и тканей вне организма в искусственных условиях. Генетическая инженерия – это отрасль биотехнологии, которая разрабатывает и использует технологии выделения генов из организмов и отдельных клеток, их видоизменение и введение в другие клетки или организмы.

Некоторые этические и правовые аспекты применения биотехнологических методов

Этика – учение о нравственности, согласно которому главной добродетелью считается умение найти середину между двух крайностей. Данная наука основана Аристотелем.

Биоэтика – часть этики, изучающая нравственную сторону деятельности человека в медицине, биологии. Термин предложен В.Р. Поттером в 1969 г.

В узком смысле биоэтика обозначает круг этических проблем в сфере медицины. В широком смысле биоэтика относится к исследованию социальных, экологических, медицинских и социально-правовых проблем, касающихся не только человека, но и любых живых организмов, включенных в экосистемы. То есть она имеет философскую направленность, оценивает результаты развития новых технологий и идей в медицине, биотехнологии и биологии в целом.

Современные биотехнологические методы обладают настолько мощным и не до конца изученным потенциалом, что их широкое применение возможно только при строгом соблюдении этических норм. Существующие в обществе моральные принципы обязывают искать компромисс между интересами общества и индивида. Более того, интересы личности ставятся в настоящее время выше интересов общества. Поэтому соблюдение и дальнейшее развитие этических норм в этой сфере должно быть направлено, прежде всего, на всемерную защиту интересов человека.

Массовое внедрение в медицинскую практику и коммерциализация принципиально новых технологий в области генной инженерии и клонирования, привело также к необходимости создания соответствующей правовой базы, регулирующей все юридические аспекты деятельности в этих направлениях.

Остановимся на тех направлениях в биотехнологических исследованиях, которые напрямую связаны с высоким риском нарушения прав личности и вызывают наиболее острую дискуссию по поводу их широкого применения: пересадка органов и клеток в терапевтических целях и клонирование.

В последние годы резко возрос интерес к изучению и применению в биомедицине эмбриональных стволовых клеток человека и техники клонирования с целью их получения. Как известно, эмбриональные стволовые клетки способны трансформироваться в разные типы клеток и тканей (кроветворные, половые, мышечные, нервные и др.). Они оказались перспективными для применения в генной терапии, трансплантологии, гематологии, ветеринарии, фармакотоксикологии, при тестировании лекарств и пр.

Выделение этих клеток производят из эмбрионов и плодов человека 5-8 недель развития, полученных при медицинском прерывании беременности (в результате аборта), что порождает многочисленные вопросы относительно этической и юридической правомерности проведения исследований на эмбрионах человека, в том числе такие:

  • насколько необходимы и оправданы научные исследования на эмбриональных стволовых клетках человека?
  • допустимо ли ради прогресса медицины разрушать человеческую жизнь и насколько это морально?
  • достаточно ли проработана правовая база для применения этих технологий?

В ряде стран запрещены любые исследования на эмбрионах (например, в Австрии, Германии). Во Франции права эмбриона защищаются с момента его зачатия. В Великобритании, Канаде и Австралии, хотя создание эмбрионов для исследовательских целей не запрещено, но разработана система законодательных актов, регулирующая и контролирующая подобные исследования.

В России ситуация в этой области более чем неопределенная: деятельность по изучению и использованию стволовых клеток недостаточно отрегулирована, остаются существенные пробелы в законодательстве, мешающие развитию этого направления. В отношении же клонирования в 2002 г. федеральным законом был введен временный (на 5 лет) запрет на клонирование человека, но срок его действия истек в 2007 г., и вопрос остается открытым.

Рынок биотехнологий

Параллелей с современным биотехом у ИТ гораздо больше, чем может показаться на первый взгляд. Информационные технологии не появились сами по себе, их расцвету предшествовали фундаментальные открытия в физике, физике материалов, вычислительной математике и кибернетике. В результате сегодня ИТ – это область «легких стартапов», от возникновения идеи до принесения прибыли в которых проходит совсем немного времени, и мало кто задумывается о той работе, которая была проделана до сегодняшнего дня.

Ситуация с биотехнологиями аналогична, просто мы сейчас находимся на более раннем этапе, когда ещё идет разработка инструментов, программ. Биотехнологии ждут появления своего «персонального компьютера»”, только в нашем случае он не будет понятным массовым устройством – речь идёт скорее о наборе эффективных и недорогих инструментов.

Можно сказать, что сейчас ситуация подобна той, что была в 1990-е в ИТ. Технологии все еще развиваются и стоят достаточно дорого. Например, полное секвенирование человека стоит $1000. Это намного дешевле, чем цена в $3,3 млрд. у Human Genome Project, но она все еще невероятно высока для обывателя, а её применение для клинической диагностики на широком уровне пока еще невозможно. Для этого нужно, чтобы технология подешевела ещё раз в 10 и улучшила технические свойства настолько, чтобы ошибки секвенирования были нивелированы. В биотехе пока нет таких мощных проектов, как Facebook, но Illumina, Oxford Nanopore, Roche – всё это крайне успешные компании, чья деятельность часто напоминает Google, скупающий интересные стартапы. А Nanopore, например, стали миллиардерами, еще не выйдя на рынок, благодаря сочетанию хорошей исходной идеи, менеджмента и успехов в привлечении финансирования.

Сегодня биотехнологии – это ещё и рынок больших данных, и это продолжает параллели с ИТ, который в данном случае служит уже своего рода инструментом для более крупного и сложного биотеха. Такие компании как Editas Medicine (одни из создателей нашумевшей технологии редактирования генома CRISPR/Cas9) сделали свой IP на результатах секвенирования геномных данных бактерий из открытых источников. Они далеко не первыми стали пожинать плоды от накопленной информации, они даже не были первыми, кто открыл принцип действия кластера CRISPR, однако именно Editas Medicine создали биотехнологический продукт. Сегодня это компания стоимостью более $1 млрд.

И это не единственный бизнес, который возникнет благодаря анализу уже существующих данных. Более того, нельзя сказать, что за такими данными стоит очередь – их уже гораздо больше, чем можно проанализировать, а будет ещё больше, ведь учёные не перестают секвенировать. К сожалению, методы анализа еще несовершенны, поэтому не всем удается превратить данные в многомиллиардный продукт. Но если мы прикинем скорость развития инструментов анализа (подсказка: она очень высокая), несложно понять, что в будущем компаний, заметивших в больших данных генома что-то интересное, станет гораздо больше.

Может ли Россия стать биотехнологической страной?

Основная проблема биотехнологий в России – это не запрет ГМО, как многим кажется, а большое количество всевозможных бюрократических барьеров. Этот факт отмечают и в правительстве. Но даже к барьерам можно приспособиться. Последние 26 лет мы развиваемся под прессом реформ, постоянной смены правил игры, а бизнесу нужна стабильность и уверенность в том, что не будет происходить никаких потрясений.

Если российским биотехнологиям не мешать, они начнут развиваться. Также хочется отметить, что необдуманное желание помогать, те самые непродуманные госинвестиции, на самом деле, приводят к противоположному результату – субсидирование приучает компании к тому, что они будут поддерживаться государством постоянно. Как показывает практика, компании на госинвестициях становятся не эффективными. Везде нужна здоровая конкуренция, поэтому первоначальные вклады должны идти даже не от государства, а от бизнеса, который должен чувствовать уверенность в завтрашнем дня, с чем у нас пока проблемы.

Самое правильное для государства – это инвестировать в создания оптимальной среды для биотеха. У нас есть и умы, и люди с энергией и желанием созидать – важно не дать этому желанию пропасть.

Сегодня биотехнологии находятся в фазе интенсивного роста, но уже можно представить вектор их развития. Ведь сам смысл технологий не изменится, как он не изменился после появления компьютера: его идея в 1951 году не особо отличалась от той, что стоит за современными компьютерами. Существенно отличается только функционал и производительность. То же самое произойдёт и с биотехнологиями, а драйвер их развития даже понятнее – это вечное желание людей быть здоровыми и жить долго, не соблюдая при этом всех сложных правил здорового образа жизни. Поэтому в самом ближайшем будущем нас ждёт расцвет биотехнологий, и в конечном счёте это прекрасные новости для всего человечества.

ТЕМА ЗАНЯТИЯ: Биотехнология как наука и сфера производства.

ЦЕЛЬ ЗАНЯТИЯ: Ознакомление с понятием «биотехнология»; рассмотрение основных сфер её практического применения.

Вопросы, выносимые на семинар:

    Приведите определения термина «биотехнология».

    Перечислите предпосылки развития биотехнологии как науки и сферы производства.

    Поясните преимущества биотехнологии перед традиционными видами технологий.

    Рассмотрите основные группы биологических объектов, применяемых в биотехнологии.

    Перечислите и охарактеризуйте этапы становления биотехнологии как науки.

    Охарактеризуйте области практического приложения биотехнологии.

    Проиллюстрируйте генетическую связь биотехнологии с другими науками.

    Поясните вклад микробиологии в развитие современной биотехнологии.

    Приведите понятие микроорганизм, чистая культура, штамм.

    Охарактеризуйте значение инженерной энзимологии для развития биотехнологии.

    Поясните роль генетической инженерии в становлении современной биотехнологии.

    Объясните, в чем состоит вклад клеточной инженерии в формировании биотехнологии как науки и сферы производства.

    Приведите и охарактеризуйте основные виды классификаций биотехнологических процессов.

Задание 1: Изучить учебный материал.

Учебный материал. Биотехнология как наука и сфера производства.

1. Понятие о биотехнологии, цели и задачи.

В последние десятилетия мы стали свидетелями своеобразного бума, связанного с рождением и становлением современной биотехнологии. Речь идет о создании мобильной, высокоэффективной, компактной отрасли производства, базирующейся на самых последних достижениях биологической науки, прежде всего на методах генетической и клеточной инженерии.

Термином биотехнология обозначают преимущественно новые, промышленно важные пути биотрансформации различных веществ и живых организмов.

Биотехнология в переводе означает производство с помощью живых существ или технология живого.

Биотехнология – это наука о применении биологических процессов и систем в производстве.

Биотехнология – это направление научно-технического прогресса, использующее биологические процессы и агенты для целенаправленного воздействия на природу, а также в интересах промышленного получения полезных для человека продуктов, в частности лекарственных средств.

Биотехнология – это объединение биохимической, микробиологической и инженерной наук с целью технологического использования микроорганизмов, культур клеток и тканей, а также составных частей клеток.

Таким образом, биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для народного хозяйства, в том числе медицины и ветеринарии, а также принципиально новых технологиях.

Биотехнология (от греч. вios – жизнь, teken – искусство, мастерство, logos – наука, умение, мастерство) – это получение продуктов из биологических объектов или с применением биологических объектов.

В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение иммуноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов).

Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганизмы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими причинами:

    Клетки являются своего рода «биофабриками», вырабатывающими в процессе своей жизнедеятельности разнообразные ценные продукты (белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и др.). Эти продукты крайне необходимы в жизни человека, и пока недоступны для получения «небиотехнологическими» способами из-за сложности технологии процессов или экономической нецелесообразности, особенно в условиях крупномасштабного промышленного производства;

    Клетки чрезвычайно быстро воспроизводятся, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток;

    Биосинтез сложных веществ (белков, антибиотиков, антигенов, антител и др.) значительно экономичнее и технологически доступнее, чем химический синтез. Коэффициент полезного действия «работы» клетки равен 70 %, а самого совершенного технологического процесса – значительно ниже;

    Возможность проведения биотехнологического процесса в промышленных масштабах, т.е. наличие соответствующего технологического оборудования и аппаратуры, доступность сырья, технологии переработки и др.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют новые продукты и выделяют метаболиты, обладающие разнообразными физико-химическими свойствами и биологическим действием. Обычно продукты жизнедеятельности одноклеточных организмов делят на 4 категории:

    сами клетки как источник целевого продукта . Например, выращенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины; дрожжи – как кормовой белок или основу для получения гидролизатов питательных сред и т.д.;

    макромолекулы, которые синтезируются клетками в процессе выращивания: ферменты, токсины, антигены, антитела, пептидогликаны и др.;

    первичные метаболиты – низкомолекулярные вещества, необходимые для роста клеток (аминокислоты, витамины, нуклеотиды, органические кислоты);

    вторичные метаболиты (идиолиты) – низкомолекулярные соединения, не требующиеся для роста клеток (антибиотики, алкалоиды, токсины, гормоны).

Задачи, стоящие перед биотехнологией.

    Поддержание и активизация путей обмена клеток, ведущих к накоплению целевых продуктов при заметном подавлении других реакций обмена у культивируемого организма.

    Получение клеток и их составных частей для направленного изменения сложных молекул.

    Углубление и совершенствование генетической инженерии, включающей рДНК-биотехнологию и клеточную инженерию, с целью получения особо ценных результатов в фундаментальных и прикладных разработках.

    Создание безотходных и экологически безопасных биотехнологических процессов.

    Совершенствование и оптимизация аппаратурного оснащения биотехнологических процессов с целью достижения максимальных выходов конечных продуктов при культивировании лекарственных видов с измененной наследственностью, полученными методами клеточной и генной инженерии.

    Повышение технико-экономических показателей биотехнологических процессов по сравнению с существующими параметрами.

Человек использовал биотехнологию на протяжении многих тысяч лет: люди занимались пивоварением, пекли хлеб, придумали способы хранения и переработки продуктов путем ферментации (производство сыра, уксуса, соевого соуса), научились делать мыло из жиров, изготавливать простейшие лекарства и перерабатывать отходы. Однако только разработка методов генетической инженерии, основанных на создании рекомбинантных ДНК, привели к тому «биотехнологическому буму», свидетелями которого мы сейчас и являемся.

Биотехнология как самостоятельная прикладная наука сформировалась в середине 50-х годов XX века, когда человечество осознало необходимость первоочередного решения на принципиально новых основах главнейших проблем современности – продовольственной, энергетической, ресурсной, загрязнения окружающей среды и др. Биотехнологические процессы базируются на использовании биосинтетического потенциала микроорганизмов, растительных и животных клеток, тканей и органов, культивируемых на искусственных питательных средах. В настоящее время во многих странах мира развитию биотехнологии придается первостепенное значение в силу ряда существенных преимуществ перед другими видами технологий : биотехнологические процессы обладают низкой энергоемкостью, почти безотходны, экологически чистые. Эти технологии предусматривают использование стандартного оборудования и реактивов, а также возможность проведения исследований круглый год, независимо от климатических условий, занимая при этом незначительные площади. Кроме того, биотехнологические процессы высокопроизводительны, для них характерен высокий уровень автоматизации и механизации. Данные процессы осуществляются при относительно низких температурах и атмосферном давлении.

(Это "заготовка" для студенческого доклада по биотехнологии, которую следует самостоятельно дополнить и расширить.)

План

    Определение понятия "биотехнология".

    Исторические предпосылки биотехнологии.

    История современной биотехнологии.

    Основные методы биотехнологии.

    Значение биотехнологии и перспективы.

Понятию "биотехнология" можно дать много близких друг другу по смыслу определений.

1. Определение понятия "биотехнология"

Варианты определений понятия "биотехнология"

1-е (принадлежит инженеру Эреки, впервые сформулировавшему понятие биотехнологии) : Это все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты.
2-е: Это совокупность промышленных методов, использующих живые организмы.
3-е: Это использование живых организмов или биологических процессов промышленным способом.
4-е: Это прикладная наука, использующая методы генной и клеточной инженерии для получения биологической продукции промышленным способом.

5-е. Биотехнология – это не производство, а исследования в области промышленного производства товаров и услуг при участии живых организмов, биологических систем и процессов (Б. Глик, Дж. Пастернак, 2002).

Биотехнология в широком смысле - это научная дисциплина и сфера практики, пограничная между биологией и техникой, которая использует технологические процессы в работе с биологическими объектами или, наоборот, использует биологические объекты в технологических процессах.

В целом, биотехнология изучает пути и методы изменения окружающей человека природной среды в соответствии с его потребностями с помощью биологических объектов, включённых в технологические процессы.

Биотехнология в узком смысле - это совокупность методов и приемов получения нужных для человека продуктов с помощью биологических объектов. В состав биотехнологии входят генная, клеточная и экологическая инженерии.

Биотехнология, или технология биопроцессов - это производственное использование биологических структур для получения пищевых и промышленных продуктов, а также для осуществления целевых превращений.

Биологические структуры (биологические объекты) - это микроорганизмы, растительные и животные клетки, клеточные компоненты: мембраны клеток, рибосомы, митохондрии, хлоропласты, а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии, новую биопроцессорную технику, и более традиционные формы биопроцессов. Так, обычное производство спирта в процессе брожения – «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - «новая» биотехнология.

Термин «биотехнология» впервые предложил венгерский инженер Карл Эреки (1917), когда описывал производство свинины (конечный продукт) с использованием сахарной свеклы (сырье) в качестве корма для свиней (биотрансформация).

Под биотехнологией К. Эреки понимал «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты». Все последующие определения этого понятия - всего лишь вариации пионерской и классической формулировки К. Эреки.

Современная биотехнология - это наука о генно-инженерных и клеточных методах и технологиях создания и использования генетически трансформированных биологических объектов для интенсификации производства или получения новых видов продуктов различного назначения.

Методы биотехнологии могут применяться на следующих уровнях: молекулярном (манипуляция с отдельными частями гена), генном, хромосомном, уровне плазмид, клеточном, тканевом, организменном и популяционном.

Стэнли Коэн и Герберт Бойер в 1973 г. разработали метод переноса гена из одного организма в другой. Коэн писал: «...есть надежда, что удастся ввести в Е. coli гены, ассоциированные с метаболическими или синтетическими функциями присущими другим биологическим видам, например, гены фотосинтеза или продукции антибиотиков». С их работы началась новая эра в молекулярной биотехнологии. Было разработано большое число методик, позволяющих 1) идентифицировать 2) выделять; 3) давать характеристику; 4) использовать гены.

В 1978 г. сотрудники фирмы «Genetech» (США) впервые выделили последовательности ДНК, кодирующие инсулин человека, и перенесли их в клонирующие векторы, способные реплицироваться в клетках Escherichia coli. Этот препарат мог использоваться больными диабетом, у которых наблюдалась аллергическая реакция на инсулин свиньи.

В настоящее время молекулярная биотехнология дает возможность получать огромное количество продуктов: инсулин, интерферон, «гормоны роста», вирусные антигены, огромное количество белков, лекарственных препаратов, низкомолекулярные вещества и макромолекулы.

Использование клеточных технологий для промышленного получения биологически активных веществ растительного происхождения

Институт физиологии растений им. К.А.Тимирязева РАН, Москва, 127276

Использование биологически активных веществ (БАВ) растительного происхождения часто ограничено доступностью растительных ресурсов и может представлять серьезную угрозу для редких видов лекарственных растений. Культуры клеток высших растений могут служить возобновляемым источником ценных вторичных метаболитов, однако до настоящего времени известны лишь единичные примеры их коммерческого применения. Основными причинами сложившейся ситуации являются недостаточная продуктивность культур клеток по вторичным метаболитам и высокая стоимость выращивания. Используя традиционные методы -селекцию продуктивных штаммов, оптимизацию сред, элиситацию, добавление предшественников синтеза - можно повысить продуктивность культур клеток растений на один-два порядка. Методы метаболической инженерии - суперэкспрессия или выключение генов белков, определяющих синтез целевого продукта - могут существенно изменять биосинтетические способности клеток in vitro. В то же время, многие вторичные соединения не удалось пока получить в культуре клеток, что может быть обусловлено спецификой клеточной культуры - экспериментально созданной популяции соматических клеток - как биологической системы. Для этих случаев может оказаться эффективным использование культур органов растений или трансформированных корней (hairy root). Проводятся работы по получению вторичных метаболитов растений в дрожжах и бактериях, трансформированных растительными генами.

Литература:

(Указать использованную для составления данного доклада литературу, включая сайты Интернета.)