Угол падения солнечных лучей формула. Солнечная радиация

Чтобы была максимальной очень важна ориентация и угол наклона коллектора . Что бы поглощать максимальное количество плоскость солнечного коллектора должна быть всегда перпендикулярна солнечным лучам. Однако солнце светит на Земную поверхность в зависимости от времени суток и года всегда под различным углом . Поэтому для монтажа солнечных коллекторов необходимо знать оптимальную ориентацию в пространстве . Для оценки оптимального ориентирования коллекторов учитывается вращение Земли вокруг Солнца и вокруг своей оси, а так же изменение расстояния от Солнца. Для определения положения или необходимо учитывать основные угловые параметры :

Широта места установки φ;

Часовой угол ω;

Угол солнечного склонения δ;

Угол наклона к горизонту β;

Азимут α;

Широта места установки (φ)показывает, насколько место находится севернее или южнее от экватора, и составляет угол от 0° до 90°,отсчитываемый от плоскости экватора до одного из полюсов - северного или южного.

Часовой угол (ω) переводит местное солнечное время в число градусов, которое солнце проходит по небу. По определение часовой угол равен нулю в полдень. Земля поворачивается на 15° за один час. Утром угол солнца отрицательный, вечером - положительный.

Угол склонения Солнца (δ) зависит от вращения Земли вокруг Солнца, поскольку орбита вращения имеет эллиптическую форму и сама ось вращения тоже наклонена, то угол меняется в течение года от значения 23.45° до -23.45°. Угол склонения становится равным нулю два раза в год в дни весеннего и осеннего равноденствия.

Склонение солнца для конкретно выбранного дня определяется по формуле:

Наклон к горизонту (β) образуется между горизонтальной плоскостью и солнечной панелью. К примеру, при монтаже на наклонной крыше угол наклона коллектора определяется крутизной ската крыши.

Азимут (α) характеризует отклонение поглощающей плоскости коллектора от южного направления, при ориентировании солнечного коллектора точно на юг азимут = 0°.

Угол падения солнечных лучей на произвольно ориентированную поверхность, имеющую определенное значение азимута α и угол наклона β, определяется по формуле:

Если в данной формуле заменить значение угла β на 0, тогда получится выражение для определения угла падения солнечных лучей на горизонтальную поверхность:

Интенсивность потока солнечного излучения для определенного положения поглощающей панели в пространстве вычисляется по формуле:

Где J s и J d интенсивность потоков прямого и рассеянного солнечного излучения падающие на горизонтальную поверхность, соответственно.

Коэффициенты положения солнечного коллектора для прямого и рассеянного солнечного излучения.

Для обеспечения попадания на абсорбер максимального (за расчетный период) количества солнечной энергии коллектор монтируют в наклонном положении с оптимальным углом наклона к горизонту β, который определяется расчетным методом и зависит от периода использования гелиосистемы. При южном ориентировании коллектора для круглогодичных гелиосистем β = φ, для сезонных гелиосистем β = φ–15°. Тогда формула примет вид, для сезонных гелиосистем:

Для круглогодичных:

Солнечные коллекторы, ориентированные в южном направлении и смонтированные под углом от 30° до 65° относительно горизонта, позволяют достичь максимального значения поглощения . Но даже при определенных отклонениях от этих условий может вырабатывать достаточное количество энергии. Установка с небольшим углом наклона более эффективна в случае, если солнечные коллекторы или солнечные батареинельзя ориентировать на юг.

К примеру, если солнечные панели ориентированы на юго-запад, с азимутом 45° и углом наклона 30°, то такая система сможет поглощать до 95% от максимального количества солнечного излучения. Или при ориентировании в восточном или западном направлении можно обеспечить до 85% попадания энергии на коллектор при установке панелей под углом 25-35°. Если угол наклона коллектора больше, то количество энергии, поступающее на поверхность коллектора, будет более равномерным, для поддержки отопления такой вариант установки более эффективен.

Зачастую ориентирование солнечного коллектора зависит от , установка коллектора производится на крыше здания, поэтому очень важно на стадии проектирования учесть возможность оптимально установки коллекторов.

В одной и той же географической точке в разное время суток солнечные лучи падают на землю под разными углами. Вычислив этот угол и зная географические координаты, можно точно вычислить астрономическое время. Возможно и обратное действие. С помощью хронометра, показывающего точное астрономическое время, можно выполнить географическую привязку точки.

Вам понадобится

  • - гномон;
  • - линейка;
  • - горизонтальная поверхность;
  • - жидкостный уровень для установления горизонтальной поверхности;
  • - калькулятор;
  • - таблицы тангенсов и котангенсов.

Инструкция

  • Найдите строго горизонтальную поверхность. Проконтролируйте ее с помощью уровня. Можно использовать как пузырьковый, так и электронный прибор. Если вы пользуетесь жидкостным уровнем, пузырек должен находиться строго в центре. Для удобства дальнейшей работы закрепите на поверхности лист бумаги. Лучше всего в данном случае использовать миллиметровку. В качестве горизонтальной поверхности можно взять лист толстой прочной фанеры. На ней не должно быть впадин и бугров.
  • Нарисуйте на миллиметровке точку или крест. Установите гномон вертикально так, чтобы его ось совпадала с вашей меткой..Гномоном называется установленный строго вертикально стержень или шест. Его вершина имеет форму острого конуса.
  • В точке окончания тени гномона поставьте вторую точку. Обозначьте ее как точку А, а первую - как точку С. Высота гномона вам должна быть известна с достаточной точностью. Чем крупнее гномон, тем точнее получится результат.
  • Измерьте расстояние от точки А до точки С любым доступным вам способом. Обратите внимание на то, чтобы единицы измерения были теми же, что и высота гномона. Если есть необходимость, переведите в наиболее удобные единицы.
  • На отдельном листе бумаги сделайте чертеж, используя полученные данные. На чертеже должен получиться прямоугольный треугольник, у которого прямой угол С - место установки гномона, катет СА - длина тени, а катет СВ - высота гномона.
  • Вычислите угол А с помощью тангенса или котангенса, используя формулу tgА=ВС/АС. Зная тангенс, определите собственно угол.
  • Полученный угол является углом между горизонтальной поверхностью и солнечным лучом. Углом падения называется угол между перпендикуляром, опущенным на поверхность, и лучом. То есть он равен 90º- А.

Памятка для решения задач по теме «Земля как планета Солнечной системы»

    Для выполнения заданий на определение высоты Солнца над горизонтом в различных пунктах, находящихся на одной паралдлели, необходимо необходимо определить полуденный меридиан, используя данные о времени Гринвичского меридиана. Полуденный меридиан определеяется по формуле:

    (12час.- время Гринвичского меридиана)*15º - если меридиан в Восточном полушарии;

    (время Гринвичского меридиана - 12 час.)*15º - если меридиан в Западном полушарии.

Чем ближе расположены предложенные в задании меридианы к полуденному меридиану, тем выше в них будет находиться Солнце, чем дальше - тем ниже.

Пример1. .

Определите, в каком из пунктов, обозначенных буквами на карте Австралии, 21 марта солнце будет находиться выше всего над горизонтом в 5 часов утра по солнечному времени Гринвичского меридиана. Запишите обоснование Вашего ответа.

Ответ. В точке А,

Точка А ближе других точек к полуденному меридиану (12 - 5)*15º =120º в.д.

Пример2. Определите, в каком из обозначенных буквами на карте Северной Америки пунктов Солнце будет находиться ниже всего над горизонтом в 18 ч. по времени Гринвичского меридиана. Ход ваших рассуждений запишите.

Ответ. В точке А (18-12)*15 º =90 º

2. Для выполнения заданий на определение высоты Солнца над горизонтом в различных пунктах, не находящихся на одной параллели, и когда есть указание на день зимнего (22 декабря) или летнего(22 июня) солнцестояния, нужно

    помнить, что Земля движется против часовой стрелки и чем чем восточнее находится пункт, тем раньше Солнце встанет над горизонтом.;

    провести анализ положения указанных в задании пунктов относительно полярных кругов и тропиков. Например, если в вопросе есть указание на день - 20 декабря, это значит день, близкий ко дню зимнего солнцестояния, когда на территории севернее полярного круга наблюдается полярная ночь. Значит, чем севернее расположен пункт, тем позже Солнце встанет над горизонтом, чем южнее, тем раньше.

Определите, в каком из пунктов, обозначенных буквами на карте Северной Америки, 20 декабря Солнце раньше всего по времени Гринвичского меридиана поднимется над горизонтом. Ход ваших рассуждений запишите.

Ответ. В точке С.

Точка А находится восточнее точки С, а точка С севернее (20 декабря продолжительность дня тем короче, чем ближе к северному полюсу).

    1. Чтобы выполнить задания по определению продолжительности дня (ночи) в связи с изменением угла наклона земной оси к плоскости орбиты, нужно помнить - градусная мера угла наклона земной оси к плоскости орбиты Земли определяет параллель, на которой будет находиться Полярный круг. Затем проводится анализ предложенной в задании ситуации. Например, если территория находится в условиях большой продолжительности дня (в июне в северном полушарии), то чем ближе территория находится к Полярному кругу, тем день длиннее, чем дальше - тем короче.

Определите, на какой из параллелей: 20° с.ш., 10° с.ш., на экваторе, 10° ю.ш., или 20° ю.ш. – будет наблюдаться максимальная продолжительность дня в день, когда Земля находится на орбите в положении, показанном на рисунке цифрой 3? Свой ответ обоснуйте.

Ответ. Максимальная продолжительность будет на широте 20 ю.ш.

В точке 3 Земля находится в день зимнего солнцестояния - 22 декабря, в условиях большей продолжительности дня - Южное полушарие. Точка А занимает самое южное положение.

На какой из параллелей, обозначенных на рисунке буквами, 22 декабря продолжительность светового дня наименьшая?

4. Для определения географической широты местности учитывается зависимость угла падения солнечных лучей отот широты местности. В дни равноденствия (21марта и 23 сентября), когда лучи Солнца падают отвесно на экватор, для определения географической широты используется формула:

90 º - угол падения солнечных лучей = широта местности (северная или южная определяется по тени отбрасываемых объектами).

В дни солнцестояний (22 июня и 22 декабря) необходимо учитывать, что лучи Солнца падают отвесно (под углом 90º ) на тропик (23,5º с.ш. и 23,5º ю.ш.). Поэтому для определения широты местности в освещенном полушарии(например, 22 июня в Северном полушарии) используется формула:

90º- (угол падения солнечных лучей - 23,5º) = широта местности

Для определения широты местности в неосвещенном полушарии (например, 22 декабря в Северном полушарии) используется формула:

90º - (угол падения солнечных лучей + 23,5º) = широта местности

Пример1.

Определите географические координаты пункта, если известно, что в дни равноденствия полуденное Солнце стоит там над горизонтом на высоте 40 º (тень от предмета падает на север), а местное время опережает время Гринвичского меридиана на 3 часа. Запишите свои расчеты и рассуждения

Ответ. 50 º с.ш., 60 º в.д.

90 º - 40 º = 50 º ( с.ш. , т. к. тень от предметов падает на север в северном полушарии)

(12-9)х15 = 60º ( в.д. , т. к. местное время опрежает Гринвичское, значит пункт находится восточнее)

Пример2.

Определите географические координаты пункта, расположенного в США, если известно, что 21 марта в 17 часов по солнечному времени Гринвичского меридиана в этом пункте полдень и Солнце находится на высоте 50° над горизонтом. Ход ваших рассуждений запишите.

Ответ. 40 º с.ш., 75 º з.д.

90 º -50 º =40 º ( с.ш. -т.к. США находятся в северном полушарии)

(17ч. -12ч.)*15 = 75 º .д., т.к.находится от Гринвичскогоь меридиана к западу на 3 часовых пояса )

Пример3.

Определите географическую широту места, если известно, что 22 июня полуденное Солнце стоит там над горизонтом на высоте 35 º с.ш. Запишите расчеты.

Ответ. 78,5 º с.ш.

90 º -(35 º -23,5 º ) = 78,5 с.ш.

5. Для определения меридиана (географической долготы местности), на котором расположен пункт, пло времени Гринвичского меридиана и местному солнечному времени, необходимо определить разницу во времени между ними. Например, если на Гринвичском меридиане полдень (12 часов), а местное солнечное время в указанном пункте 8 часов, разница(12-8) составляет 4 часа. Протяженность одного часового пояса 15º. Для определения искомого меридианапроводится вычисление 4 х 15º = 60º. Чтобы определить полушарие, в котором находится данный меридиан, нужноьпомнить, что Земля вращается с запада на восток (против часовой стрелки). Значит, если время Гринвичского меридиана больше, чем в заданном пункте, пункт находится в Западном полушарии(как в предложенном примере). Если время Гринвичского меридиана меньше, чем в заданном пункте, пункт находится в Восточном полушарии.

Пример.

На каком меридиане расположен пункт, если изхвестно, что в полдень по времени Гринвичского меридиана местное солнечное время в нем 16 часов? Ход ваших рассуждений запишите.

Ответ. Пункт находится на меридиане 60 º в.д.

16ч. -12ч. = 4ч.(разница во времени)

4х15 º = 60 º

Восточная долгота, т. к. в пункте 16.00, когда на Гринвиче еще 12.00(т.е. пункт находится восточнее)

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).