نسبة اللوغاريتمات الطبيعية. ما هو اللوغاريتم

(من اليونانية ἀριθμός - "كلمة"، "علاقة" و ἀριθμός - "رقم") الأرقام بمرتكز على أ(سجل α ب) يسمى هذا الرقم ج، و ب= ج، أي سجل السجلات α ب=جو ب=أجمتكافئة. يكون اللوغاريتم منطقيًا إذا كانت a > 0، وa ≠ 1، وb > 0.

بعبارة أخرى اللوغاريتمأعداد بمرتكز على أتمت صياغته كأس يجب رفع الرقم إليه أللحصول على الرقم ب(اللوغاريتم موجود فقط للأرقام الموجبة).

ويترتب على هذه الصيغة أن الحساب x= log α ب، يعادل حل المعادلة a x =b.

على سبيل المثال:

سجل 2 8 = 3 لأن 8 = 2 3 .

دعونا نؤكد أن صياغة اللوغاريتم المشار إليها تجعل من الممكن تحديدها على الفور قيمة اللوغاريتم، عندما يكون الرقم الموجود أسفل علامة اللوغاريتم بمثابة قوة للقاعدة. في الواقع، صياغة اللوغاريتم تجعل من الممكن تبرير ذلك إذا ب=أ ج، ثم لوغاريتم الرقم بمرتكز على أيساوي مع. ومن الواضح أيضًا أن موضوع اللوغاريتمات يرتبط ارتباطًا وثيقًا بالموضوع صلاحيات عدد.

يسمى حساب اللوغاريتم اللوغاريتم. اللوغاريتم هو العملية الرياضية لأخذ اللوغاريتم. عند أخذ اللوغاريتمات، يتم تحويل منتجات العوامل إلى مجموع المصطلحات.

التقويةهي العملية الرياضية العكسية للوغاريتم. أثناء التقوية، يتم رفع قاعدة معينة إلى درجة التعبير التي يتم تنفيذ التقوية عليها. في هذه الحالة، يتم تحويل مجموع المصطلحات إلى منتج العوامل.

في كثير من الأحيان، يتم استخدام اللوغاريتمات الحقيقية مع القواعد 2 (ثنائية)، ورقم أويلر e ≈ 2.718 (اللوغاريتم الطبيعي) و10 (عشري).

في هذه المرحلة فمن المستحسن أن تأخذ في الاعتبار عينات اللوغاريتمسجل 7 2 , ln 5, lg0.0001.

والإدخالات lg(-3)، log -3 3.2، log -1 -4.3 لا معنى لها، لأنه في الأول منها يتم وضع رقم سالب تحت علامة اللوغاريتم، وفي الثانية يوجد رقم سالب وفي القاعدة الثالثة يوجد رقم سالب تحت علامة اللوغاريتم والوحدة في القاعدة.

شروط تحديد اللوغاريتم.

يجدر النظر بشكل منفصل في الشروط a > 0، a ≠ 1، b > 0. والتي نحصل بموجبها على تعريف اللوغاريتم.دعونا نفكر في سبب اتخاذ هذه القيود. إن المساواة في النموذج x = log α ستساعدنا في ذلك ب، تسمى الهوية اللوغاريتمية الأساسية، والتي تنبع مباشرة من تعريف اللوغاريتم المذكور أعلاه.

لنأخذ الشرط أ≠1. بما أن واحد إلى أي قوة يساوي واحدًا، فإن المساواة x=log α بلا يمكن أن توجد إلا عندما ب = 1، لكن السجل 1 1 سيكون أي رقم حقيقي. للقضاء على هذا الغموض، نأخذ أ≠1.

دعونا نثبت ضرورة الشرط أ>0. في أ = 0وفقا لصياغة اللوغاريتم يمكن أن توجد إلا عندما ب=0. وبناء على ذلك الحين سجل 0 0يمكن أن يكون أي عدد حقيقي غير الصفر، حيث أن صفر مرفوعًا لأي قوة غير الصفر يساوي صفرًا. يمكن القضاء على هذا الغموض عن طريق الشرط أ≠0. وعندما أ<0 سيتعين علينا رفض تحليل القيم العقلانية وغير العقلانية للوغاريتم، حيث يتم تعريف الدرجة ذات الأس العقلاني وغير العقلاني فقط للقواعد غير السلبية. ولهذا السبب تم اشتراط الشرط أ>0.

والشرط الأخير ب>0ينبع من عدم المساواة أ>0، بما أن x=log α بوقيمة الدرجة ذات القاعدة الموجبة أدائما إيجابية.

ميزات اللوغاريتمات.

اللوغاريتماتتتميز بالمميزة سماتمما أدى إلى استخدامها على نطاق واسع لتسهيل العمليات الحسابية المضنية بشكل كبير. عند الانتقال "إلى عالم اللوغاريتمات"، يتحول الضرب إلى عملية جمع أسهل بكثير، ويتحول القسمة إلى طرح، ويتحول الأس واستخراج الجذر، على التوالي، إلى الضرب والقسمة بواسطة الأس.

تم نشر صياغة اللوغاريتمات وجدول قيمها (للدوال المثلثية) لأول مرة في عام 1614 من قبل عالم الرياضيات الاسكتلندي جون نابير. تم استخدام الجداول اللوغاريتمية، التي تم توسيعها وتفصيلها من قبل علماء آخرين، على نطاق واسع في الحسابات العلمية والهندسية، وظلت ذات صلة حتى استخدام الآلات الحاسبة الإلكترونية وأجهزة الكمبيوتر.

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

تحتاج بالتأكيد إلى معرفة هذه القواعد - بدونها، لا يمكن حل أي مشكلة لوغاريتمية خطيرة. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. اذا هيا بنا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: السجل أ سوسجل أ ذ. ومن ثم يمكن إضافتها وطرحها، و:

  1. سجل أ س+سجل أ ذ=log أ (س · ذ);
  2. سجل أ س- سجل أ ذ=log أ (س : ذ).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا اختلفت الأسباب فلا تصلح هذه القواعد!

ستساعدك هذه الصيغ في حساب التعبير اللوغاريتمي حتى في حالة عدم أخذ أجزائه الفردية في الاعتبار (راجع الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

سجل 6 4 + سجل 6 9.

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل 6 4 + سجل 6 9 = سجل 6 (4 9) = سجل 6 36 = 2.

مهمة. أوجد قيمة التعبير: log 2 48 − log 2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل 2 48 - سجل 2 3 = سجل 2 (48: 3) = سجل 2 16 = 4.

مهمة. أوجد قيمة التعبير: log 3 135 − log 3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
سجل 3 135 - سجل 3 5 = سجل 3 (135: 5) = سجل 3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. وتستند العديد من الاختبارات على هذه الحقيقة. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

الآن دعونا نعقد المهمة قليلاً. ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

ومن السهل أن نرى أن القاعدة الأخيرة تتبع القاعدتين الأوليين. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من كمية العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: أ > 0, أ ≠ 1, س> 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا بالعكس، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه. وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log 7 49 6 .

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
سجل 7 49 6 = 6 سجل 7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 2 4 ; 49 = 7 2. لدينا:

[تعليق على الصورة]

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم. لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأخرجنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log 2 7. بما أن log 2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع سجل اللوغاريتم يعطى أ س. ثم لأي رقم جمثل ذلك ج> 0 و ج≠ 1، المساواة صحيحة:

[تعليق على الصورة]

على وجه الخصوص، إذا وضعنا ج = س، نحن نحصل:

[تعليق على الصورة]

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات الرقمية العادية. من الممكن تقييم مدى ملاءمتها فقط عند حل المعادلات اللوغاريتمية والمتباينات.

لكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: سجل 5 16 سجل 2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log 5 16 = log 5 2 4 = 4log 5 2; سجل 2 25 = سجل 2 5 2 = 2سجل 2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

[تعليق على الصورة]

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log 9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

[تعليق على الصورة]

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

[تعليق على الصورة]

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى العدد نيصبح مؤشرا على درجة الوقوف في الحجة. رقم نيمكن أن تكون أي شيء على الإطلاق، لأنها مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يطلق عليه: الهوية اللوغاريتمية الأساسية.

في الواقع، ماذا سيحدث إذا كان العدد برفع إلى هذه القوة أن العدد بلهذه القوة يعطي الرقم أ؟ هذا صحيح: تحصل على نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن log 25 64 = log 5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. ومع الأخذ في الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

[تعليق على الصورة]

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. سجل أ أ= 1 هي وحدة لوغاريتمية. تذكر مرة واحدة وإلى الأبد: اللوغاريتم لأي قاعدة أمن هذه القاعدة ذاتها يساوي واحدًا.
  2. سجل أ 1 = 0 هو صفر لوغاريتمي. قاعدة أيمكن أن يكون أي شيء، ولكن إذا كانت الوسيطة تحتوي على واحد، فإن اللوغاريتم يساوي صفرًا! لأن أ 0 = 1 هو نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.

تعليمات

اكتب التعبير اللوغاريتمي المعطى. إذا كان التعبير يستخدم لوغاريتم 10، فسيتم اختصار تدوينه ويبدو كما يلي: lg b هو اللوغاريتم العشري. إذا كان اللوغاريتم يحتوي على الرقم e كأساس له، فاكتب التعبير: ln b – اللوغاريتم الطبيعي. ومن المفهوم أن نتيجة أي هي القوة التي يجب رفع الرقم الأساسي إليها للحصول على الرقم ب.

عند إيجاد مجموع دالتين، ما عليك سوى التمييز بينهما واحدة تلو الأخرى وإضافة النتائج: (u+v)" = u"+v";

عند إيجاد مشتقة حاصل ضرب دالتين من الضروري ضرب مشتقة الدالة الأولى في الثانية وإضافة مشتقة الدالة الثانية مضروبة في الدالة الأولى: (u*v)" = u"*v +v"*u;

من أجل العثور على مشتق حاصل قسمة دالتين، من الضروري طرح ناتج مشتقة المقسوم مضروبًا في دالة المقسوم عليه، حاصل ضرب مشتقة المقسوم عليه في دالة المقسوم عليه، وتقسيمه كل هذا من خلال دالة المقسوم عليها. (u/v)" = (u"*v-v"*u)/v^2;

إذا تم إعطاء دالة معقدة، فمن الضروري ضرب مشتق الدالة الداخلية ومشتق الدالة الخارجية. دع y=u(v(x)) ثم y"(x)=y"(u)*v"(x).

باستخدام النتائج التي تم الحصول عليها أعلاه، يمكنك التمييز بين أي وظيفة تقريبًا. لذلك دعونا نلقي نظرة على بعض الأمثلة:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *س));
هناك أيضًا مشاكل تتعلق بحساب المشتق عند نقطة ما. افترض أن الدالة y=e^(x^2+6x+5) معطاة، فأنت بحاجة إلى العثور على قيمة الدالة عند النقطة x=1.
1) أوجد مشتقة الدالة: y"=e^(x^2-6x+5)*(2*x +6).

2) احسب قيمة الدالة عند نقطة معينة y"(1)=8*e^0=8

فيديو حول الموضوع

نصائح مفيدة

تعلم جدول المشتقات الأولية. وهذا سيوفر الوقت بشكل كبير.

مصادر:

  • مشتق من ثابت

إذًا، ما الفرق بين المعادلة غير العقلانية والمعادلة العقلانية؟ إذا كان المتغير المجهول تحت علامة الجذر التربيعي، فإن المعادلة تعتبر غير منطقية.

تعليمات

الطريقة الرئيسية لحل مثل هذه المعادلات هي طريقة بناء كلا الطرفين المعادلاتفي مربع. لكن. هذا أمر طبيعي، أول شيء عليك فعله هو التخلص من العلامة. هذه الطريقة ليست صعبة من الناحية الفنية، ولكنها قد تؤدي في بعض الأحيان إلى مشاكل. على سبيل المثال، المعادلة هي v(2x-5)=v(4x-7). بتربيع الطرفين تحصل على 2x-5=4x-7. إن حل مثل هذه المعادلة ليس بالأمر الصعب؛ س = 1. ولكن لن يتم إعطاء الرقم 1 المعادلات. لماذا؟ استبدل واحدًا في المعادلة بدلًا من قيمة x وسيحتوي الجانبان الأيمن والأيسر على تعبيرات لا معنى لها. هذه القيمة غير صالحة للجذر التربيعي. لذلك، 1 هو جذر خارجي، وبالتالي فإن هذه المعادلة ليس لها جذور.

إذن، يتم حل المعادلة غير النسبية باستخدام طريقة تربيع طرفيها. وبعد حل المعادلة، من الضروري قطع الجذور الدخيلة. للقيام بذلك، قم بالتعويض بالجذور الموجودة في المعادلة الأصلية.

النظر في واحد آخر.
2x+vx-3=0
وبالطبع يمكن حل هذه المعادلة باستخدام نفس المعادلة السابقة. تحرك المركبات المعادلاتالتي ليس لها جذر تربيعي، إلى الجانب الأيمن ثم استخدم طريقة التربيع. حل المعادلة العقلانية الناتجة والجذور. ولكن أيضًا واحدة أخرى أكثر أناقة. أدخل متغيرا جديدا. vx=y. وبناء على ذلك، سوف تحصل على معادلة على الشكل 2y2+y-3=0. أي معادلة تربيعية عادية. ابحث عن جذوره؛ y1=1 و y2=-3/2. التالي حل اثنين المعادلات vx=1; vx=-3/2. المعادلة الثانية ليس لها جذور؛ من الأولى نجد أن x=1. لا تنس التحقق من الجذور.

حل الهويات بسيط للغاية. للقيام بذلك، من الضروري إجراء تحولات مماثلة حتى يتم تحقيق الهدف المحدد. وهكذا، بمساعدة العمليات الحسابية البسيطة، سيتم حل المشكلة المطروحة.

سوف تحتاج

  • - ورق؛
  • - قلم.

تعليمات

أبسط هذه التحويلات هي الضربات الجبرية المختصرة (مثل مربع المجموع (الفرق)، فرق المربعات، المجموع (الفرق)، مكعب المجموع (الفرق)). بالإضافة إلى ذلك، هناك العديد من الصيغ المثلثية، والتي هي في الأساس نفس الهويات.

في الواقع، مربع مجموع حدين يساوي مربع الأول زائد ضعف ناتج الأول في الثاني وزائد مربع الثاني، أي (a+b)^2= (a+ ب)(أ+ب)=أ^2+آب +با+ب ^2=أ^2+2ab+ب^2.

بسّط كلا الأمرين

المبادئ العامة للحل

كرر من كتاب مدرسي عن التحليل الرياضي أو الرياضيات العليا ما هو التكامل المحدد. كما هو معروف، حل التكامل المحدد هو دالة مشتقتها سوف تعطي تكاملا. هذه الوظيفة تسمى المشتق العكسي. وعلى هذا المبدأ يتم بناء التكاملات الرئيسية.
حدد حسب نوع التكامل وأي من تكاملات الجدول مناسب في هذه الحالة. ليس من الممكن دائمًا تحديد ذلك على الفور. في كثير من الأحيان، يصبح الشكل الجدولي ملحوظًا فقط بعد عدة تحويلات لتبسيط التكامل.

طريقة الاستبدال المتغيرة

إذا كان التكامل عبارة عن دالة مثلثية وسيطتها متعددة الحدود، فحاول استخدام طريقة تغيير المتغيرات. من أجل القيام بذلك، استبدل كثير الحدود في وسيطة التكامل بمتغير جديد. بناءً على العلاقة بين المتغيرات الجديدة والقديمة، حدد الحدود الجديدة للتكامل. من خلال التمييز بين هذا التعبير، ابحث عن التفاضل الجديد في . وبالتالي، سوف تحصل على شكل جديد من التكامل السابق، قريب أو حتى يتوافق مع بعض الجدول.

حل التكاملات من النوع الثاني

إذا كان التكامل تكاملًا من النوع الثاني، وهو شكل متجه للتكامل، فستحتاج إلى استخدام قواعد الانتقال من هذه التكاملات إلى التكاملات العددية. إحدى هذه القواعد هي علاقة أوستروجرادسكي-غاوس. يسمح لنا هذا القانون بالانتقال من التدفق الدوار لوظيفة متجهة معينة إلى التكامل الثلاثي على مدى تباعد مجال متجه معين.

استبدال حدود التكامل

بعد إيجاد المشتقة العكسية، من الضروري التعويض بحدود التكامل. أولًا، عوض بقيمة الحد الأعلى في التعبير الخاص بالمشتق العكسي. سوف تحصل على بعض الرقم. بعد ذلك، اطرح من الرقم الناتج رقمًا آخر تم الحصول عليه من الحد الأدنى إلى المشتق العكسي. إذا كانت إحدى حدود التكامل هي اللانهاية، فعند استبدالها في دالة المشتقة العكسية، فمن الضروري الذهاب إلى النهاية والعثور على ما يميل إليه التعبير.
إذا كان التكامل ثنائي أو ثلاثي الأبعاد، فسيتعين عليك تمثيل حدود التكامل هندسيًا لفهم كيفية حساب التكامل. في الواقع، في حالة التكامل ثلاثي الأبعاد، على سبيل المثال، يمكن أن تكون حدود التكامل مستويات كاملة تحد من الحجم الجاري تكامله.

لذلك، لدينا قوى اثنين. إذا أخذت الرقم من السطر السفلي، فيمكنك بسهولة العثور على القوة التي سيتعين عليك رفع اثنين إليها للحصول على هذا الرقم. على سبيل المثال، للحصول على 16، عليك رفع اثنين إلى القوة الرابعة. وللحصول على 64، عليك رفع اثنين إلى القوة السادسة. ويمكن ملاحظة ذلك من الجدول.

والآن - في الواقع، تعريف اللوغاريتم:

لوغاريتم x الأساسي هو القوة التي يجب رفع a إليها للحصول على x.

التعيين: log a x = b، حيث a هي القاعدة، x هي الوسيطة، b هو ما يساوي اللوغاريتم فعليًا.

على سبيل المثال، 2 3 = 8 ⇒ log 2 8 = 3 (اللوغاريتم ذو الأساس 2 للرقم 8 هو ثلاثة لأن 2 3 = 8). بنفس سجل النجاح 2 64 = 6، حيث أن 2 6 = 64.

تسمى عملية إيجاد لوغاريتم رقم لقاعدة معينة باللوغاريتم. لذا، دعونا نضيف سطرًا جديدًا إلى جدولنا:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
سجل 2 2 = 1سجل 2 4 = 2 سجل 2 8 = 3سجل 2 16 = 4 سجل 2 32 = 5سجل 2 64 = 6

لسوء الحظ، لا يتم حساب جميع اللوغاريتمات بهذه السهولة. على سبيل المثال، حاول العثور على السجل 2 5 . الرقم 5 غير موجود في الجدول، لكن المنطق يفرض أن اللوغاريتم سيكون موجودًا في مكان ما على القطعة. لأن 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

تسمى هذه الأرقام غير عقلانية: يمكن كتابة الأرقام بعد العلامة العشرية إلى ما لا نهاية، ولا تتكرر أبدًا. إذا تبين أن اللوغاريتم غير منطقي، فمن الأفضل ترك الأمر على هذا النحو: سجل 2 5، سجل 3 8، سجل 5 100.

من المهم أن نفهم أن اللوغاريتم هو تعبير ذو متغيرين (الأساس والوسيطة). في البداية، يخلط الكثير من الناس بين مكان الأساس ومكان الحجة. لتجنب سوء الفهم المزعج، ما عليك سوى إلقاء نظرة على الصورة:

أمامنا ليس أكثر من تعريف اللوغاريتم. يتذكر: اللوغاريتم هو القوة، والتي يجب بناء القاعدة فيها من أجل الحصول على وسيطة. هي القاعدة المرفوعة إلى قوة - وهي مظللة باللون الأحمر في الصورة. اتضح أن القاعدة تكون دائمًا في الأسفل! أخبر طلابي بهذه القاعدة الرائعة في الدرس الأول - ولا ينشأ أي ارتباك.

لقد اكتشفنا التعريف - كل ما تبقى هو معرفة كيفية حساب اللوغاريتمات، أي. تخلص من علامة "السجل". في البداية، نلاحظ أن حقيقتين مهمتين تنبثق من التعريف:

  1. يجب أن تكون الحجة والقاعدة دائمًا أكبر من الصفر. يأتي هذا من تعريف الدرجة بواسطة الأس العقلاني، والذي يتم تقليل تعريف اللوغاريتم إليه.
  2. يجب أن تكون القاعدة مختلفة عن الواحد، حيث أن الواحد يظل واحدًا بأي درجة. ولهذا السبب، فإن السؤال "إلى أي قوة يجب أن يرتفع الإنسان للحصول على اثنين" لا معنى له. لا يوجد مثل هذه الدرجة!

تسمى هذه القيود نطاق القيم المقبولة(ODZ). اتضح أن ODZ للوغاريتم يبدو كما يلي: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

لاحظ أنه لا توجد قيود على الرقم ب (قيمة اللوغاريتم). على سبيل المثال، قد يكون اللوغاريتم سالبًا: log 2 0.5 = −1، لأن 0.5 = 2 −1.

ومع ذلك، نحن الآن نفكر فقط في التعبيرات الرقمية، حيث ليس من الضروري معرفة قيمة VA للوغاريتم. لقد تم بالفعل أخذ جميع القيود في الاعتبار من قبل مؤلفي المشاكل. ولكن عندما تدخل المعادلات اللوغاريتمية والمتباينات حيز التنفيذ، ستصبح متطلبات DL إلزامية. بعد كل شيء، قد يحتوي الأساس والحجة على إنشاءات قوية جدًا لا تتوافق بالضرورة مع القيود المذكورة أعلاه.

الآن دعونا نلقي نظرة على المخطط العام لحساب اللوغاريتمات. يتكون من ثلاث خطوات:

  1. عبر عن الأساس a والوسيطة x كقوة بأقل قاعدة ممكنة أكبر من الواحد. على طول الطريق، من الأفضل التخلص من الكسور العشرية؛
  2. حل معادلة المتغير b: x = a b ;
  3. سيكون الرقم الناتج ب هو الجواب.

هذا كل شئ! إذا تبين أن اللوغاريتم غير منطقي، فسيكون هذا مرئيًا بالفعل في الخطوة الأولى. يعد شرط أن يكون الأساس أكبر من واحد أمرًا مهمًا للغاية: فهذا يقلل من احتمالية الخطأ ويبسط الحسابات إلى حد كبير. الأمر نفسه ينطبق على الكسور العشرية: إذا قمت بتحويلها على الفور إلى كسور عادية، فسيكون هناك عدد أقل من الأخطاء.

دعونا نرى كيف يعمل هذا المخطط باستخدام أمثلة محددة:

مهمة. احسب اللوغاريتم: سجل 5 25

  1. دعونا نتخيل القاعدة والحجة كقوة خمسة: 5 = 5 1 ؛ 25 = 5 2 ;
  2. لنقم بإنشاء المعادلة وحلها:
    سجل 5 25 = ب ⇒ (5 1) ب = 5 2 ⇒ 5 ب = 5 2 ⇒ ب = 2 ;

  3. تلقينا الجواب: 2.

مهمة. احسب اللوغاريتم:

مهمة. احسب اللوغاريتم: سجل 4 64

  1. دعونا نتخيل القاعدة والحجة كقوة اثنين: 4 = 2 2 ; 64 = 2 6 ;
  2. لنقم بإنشاء المعادلة وحلها:
    سجل 4 64 = ب ⇒ (2 2) ب = 2 6 ⇒ 2 2ب = 2 6 ⇒ 2ب = 6 ⇒ ب = 3 ;
  3. تلقينا الجواب: 3.

مهمة. احسب اللوغاريتم: سجل 16 1

  1. دعونا نتخيل القاعدة والحجة كقوة اثنين: 16 = 2 4 ; 1 = 2 0 ;
  2. لنقم بإنشاء المعادلة وحلها:
    سجل 16 1 = ب ⇒ (2 4) ب = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ ب = 0 ;
  3. لقد تلقينا الجواب: 0.

مهمة. احسب اللوغاريتم: سجل 7 14

  1. لنتخيل القاعدة والحجة كقوة لسبعة: 7 = 7 1 ؛ لا يمكن تمثيل 14 كقوة لسبعة، لأن 7 1< 14 < 7 2 ;
  2. ويترتب على الفقرة السابقة أن اللوغاريتم لا يحسب؛
  3. الجواب هو لا تغيير: سجل 7 14.

ملاحظة صغيرة على المثال الأخير. كيف يمكنك التأكد من أن الرقم ليس قوة دقيقة لرقم آخر؟ الأمر بسيط جدًا، ما عليك سوى تحليله إلى عوامل أولية. إذا كان للتمدد عاملين مختلفين على الأقل، فإن الرقم ليس قوة محددة.

مهمة. معرفة ما إذا كانت الأرقام هي القوى الدقيقة: 8؛ 48؛ 81؛ 35؛ 14 .

8 = 2 · 2 · 2 = 2 3 - الدرجة الدقيقة، لأن هناك مضاعف واحد فقط؛
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - ليست قوة دقيقة، حيث أن هناك عاملين: 3 و 2؛
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - الدرجة الدقيقة؛
35 = 7 · 5 - مرة أخرى ليست قوة محددة؛
14 = 7 · 2 - مرة أخرى ليست درجة محددة؛

لاحظ أيضًا أن الأعداد الأولية نفسها هي دائمًا قوى دقيقة لذاتها.

اللوغاريتم العشري

بعض اللوغاريتمات شائعة جدًا بحيث يكون لها اسم ورمز خاصان.

اللوغاريتم العشري لـ x هو اللوغاريتم للأساس 10، أي. القوة التي يجب رفع الرقم 10 إليها للحصول على الرقم x. التسمية: إل جي إكس.

على سبيل المثال، سجل 10 = 1؛ سجل 100 = 2؛ إل جي 1000 = 3 - إلخ.

من الآن فصاعدًا، عندما تظهر عبارة مثل "Find lg 0.01" في كتاب مدرسي، فاعلم أن هذا ليس خطأ مطبعي. هذا هو اللوغاريتم العشري. ومع ذلك، إذا لم تكن على دراية بهذا الترميز، فيمكنك دائمًا إعادة كتابته:
سجل س = سجل 10 س

كل ما ينطبق على اللوغاريتمات العادية ينطبق أيضًا على اللوغاريتمات العشرية.

اللوغاريتم الطبيعي

هناك لوغاريتم آخر له تسمية خاصة به. في بعض النواحي، يكون أكثر أهمية من العلامة العشرية. نحن نتحدث عن اللوغاريتم الطبيعي.

اللوغاريتم الطبيعي لـ x هو اللوغاريتم للأساس e، أي. القوة التي يجب رفع الرقم e إليها للحصول على الرقم x. التعيين: ln x .

سيسأل الكثير: ما هو الرقم ه؟ هذا رقم غير نسبي، ولا يمكن العثور على قيمته الدقيقة وكتابتها. سأقدم الأرقام الأولى فقط:
ه = 2.718281828459...

لن نخوض في التفاصيل حول ماهية هذا الرقم وسبب الحاجة إليه. فقط تذكر أن e هو أساس اللوغاريتم الطبيعي:
ln x = سجل e x

وبالتالي ln e = 1 ; لن ه 2 = 2؛ لن ه 16 = 16 - الخ ومن ناحية أخرى، ln 2 هو عدد غير نسبي. بشكل عام، اللوغاريتم الطبيعي لأي رقم نسبي هو غير منطقي. باستثناء واحد بالطبع: ln 1 = 0.

بالنسبة للوغاريتمات الطبيعية، فإن جميع القواعد الصحيحة للوغاريتمات العادية صالحة.

كما تعلم، عند ضرب التعبيرات بالقوى، فإن أسسها دائمًا ما تكون مجمعة (a b *a c = a b+c). اشتق هذا القانون الرياضي من قبل أرخميدس، وفي وقت لاحق، في القرن الثامن، قام عالم الرياضيات فيراسين بإنشاء جدول من الأسس الصحيحة. لقد كانوا هم الذين خدموا في اكتشاف المزيد من اللوغاريتمات. يمكن العثور على أمثلة لاستخدام هذه الوظيفة في كل مكان تقريبًا حيث تحتاج إلى تبسيط الضرب المرهق عن طريق الجمع البسيط. إذا أمضيت 10 دقائق في قراءة هذا المقال، فسنشرح لك ما هي اللوغاريتمات وكيفية التعامل معها. بلغة بسيطة وسهلة المنال.

التعريف في الرياضيات

اللوغاريتم هو تعبير بالشكل التالي: log a b=c، أي لوغاريتم أي رقم غير سالب (أي أي موجب) "b" إلى قاعدته "a" يعتبر أس "c" " والتي يجب رفع الأساس "أ" إليها للحصول على القيمة "ب" في النهاية. دعونا نحلل اللوغاريتم باستخدام الأمثلة، لنفترض أن هناك سجل تعبير 2 8. كيف تجد الإجابة؟ الأمر بسيط للغاية، تحتاج إلى العثور على قوة بحيث تحصل على 8 من 2 إلى القوة المطلوبة. وبعد إجراء بعض الحسابات في رأسك، نحصل على الرقم 3! وهذا صحيح، لأن 2 أس 3 يعطي الإجابة 8.

أنواع اللوغاريتمات

بالنسبة للعديد من الطلاب، يبدو هذا الموضوع معقدا وغير مفهوم، ولكن في الواقع اللوغاريتمات ليست مخيفة للغاية، والشيء الرئيسي هو فهم معناها العام وتذكر خصائصها وبعض القواعد. هناك ثلاثة أنواع منفصلة من التعبيرات اللوغاريتمية:

  1. اللوغاريتم الطبيعي ln a، حيث الأساس هو رقم أويلر (e = 2.7).
  2. العشري أ، حيث الأساس هو 10.
  3. لوغاريتم أي رقم ب للأساس أ> 1.

يتم حل كل منها بطريقة قياسية، بما في ذلك التبسيط والاختزال والاختزال اللاحق إلى لوغاريتم واحد باستخدام النظريات اللوغاريتمية. للحصول على القيم الصحيحة للوغاريتمات، يجب أن تتذكر خصائصها وتسلسل الإجراءات عند حلها.

القواعد وبعض القيود

في الرياضيات، هناك العديد من القيود والقواعد التي يتم قبولها كبديهية، أي أنها لا تخضع للمناقشة وهي الحقيقة. على سبيل المثال، من المستحيل قسمة الأعداد على صفر، ومن المستحيل أيضًا استخراج الجذر الزوجي للأعداد السالبة. تحتوي اللوغاريتمات أيضًا على قواعدها الخاصة، والتي يمكنك من خلالها تعلم كيفية العمل بسهولة حتى مع التعبيرات اللوغاريتمية الطويلة والواسعة:

  • يجب أن يكون الأساس "أ" دائمًا أكبر من الصفر، ولا يساوي 1، وإلا فسيفقد التعبير معناه، لأن "1" و"0" بأي درجة متساويان دائمًا لقيمتهما؛
  • إذا كانت a > 0، ثم b >0، يتبين أن "c" يجب أن تكون أيضًا أكبر من الصفر.

كيفية حل اللوغاريتمات؟

على سبيل المثال، تم تكليفك بمهمة العثور على إجابة المعادلة 10 × = 100. هذا سهل للغاية، تحتاج إلى اختيار قوة عن طريق رفع الرقم عشرة الذي نحصل عليه 100. وهذا بالطبع هو 10 2 = 100.

الآن دعونا نمثل هذا التعبير في صورة لوغاريتمية. نحصل على سجل 10 100 = 2. عند حل اللوغاريتمات، تتلاقى جميع الإجراءات عمليا للعثور على القوة التي من الضروري إدخال قاعدة اللوغاريتم من أجل الحصول على رقم معين.

لتحديد قيمة درجة غير معروفة بدقة، عليك أن تتعلم كيفية العمل مع جدول الدرجات. تبدو هكذا:

كما ترون، يمكن تخمين بعض الأسس بشكل حدسي إذا كان لديك عقل تقني ومعرفة بجدول الضرب. ومع ذلك، لقيم أكبر سوف تحتاج إلى جدول الطاقة. يمكن استخدامه حتى من قبل أولئك الذين لا يعرفون شيئًا على الإطلاق عن الموضوعات الرياضية المعقدة. يحتوي العمود الأيسر على أرقام (الأساس أ)، والصف العلوي من الأرقام هو قيمة القوة ج التي يرتفع إليها الرقم أ. عند التقاطع تحتوي الخلايا على القيم الرقمية التي هي الجواب (أ ج = ب). لنأخذ، على سبيل المثال، الخلية الأولى ذات الرقم 10 ونقوم بتربيعها، ونحصل على القيمة 100، والتي تتم الإشارة إليها عند تقاطع الخليتين لدينا. كل شيء بسيط وسهل لدرجة أن حتى أكثر الإنسانيين صدقًا سوف يفهمونه!

المعادلات والمتباينات

اتضح أنه في ظل ظروف معينة يكون الأس هو اللوغاريتم. لذلك، يمكن كتابة أي تعبيرات عددية رياضية على هيئة مساواة لوغاريتمية. على سبيل المثال، 3 4 = 81 يمكن كتابتها على أنها اللوغاريتم ذو الأساس 3 للرقم 81 يساوي أربعة (log 3 81 = 4). القواعد هي نفسها بالنسبة للقوى السالبة: 2 -5 = 1/32 نكتبها على شكل لوغاريتم، ونحصل على log 2 (1/32) = -5. أحد أروع أقسام الرياضيات هو موضوع "اللوغاريتمات". سننظر في أمثلة وحلول المعادلات أدناه مباشرة بعد دراسة خصائصها. الآن دعونا نلقي نظرة على الشكل الذي تبدو عليه المتباينات وكيفية تمييزها عن المعادلات.

يتم إعطاء التعبير التالي: log 2 (x-1) > 3 - وهي متباينة لوغاريتمية، لأن القيمة غير المعروفة "x" تقع تحت العلامة اللوغاريتمية. وأيضًا في التعبير تتم مقارنة كميتين: لوغاريتم الرقم المطلوب للأساس اثنين أكبر من الرقم ثلاثة.

الفرق الأكثر أهمية بين المعادلات اللوغاريتمية والمتباينات هو أن المعادلات ذات اللوغاريتمات (على سبيل المثال، اللوغاريتم 2 x = √9) تتضمن قيمة عددية واحدة أو أكثر محددة في الإجابة، بينما عند حل المتراجحة، يكون كل من نطاق المقبول يتم تحديد القيم والنقاط بكسر هذه الوظيفة. ونتيجة لذلك، فإن الإجابة ليست مجموعة بسيطة من الأرقام الفردية، كما هو الحال في الإجابة على المعادلة، ولكن سلسلة مستمرة أو مجموعة من الأرقام.

النظريات الأساسية حول اللوغاريتمات

عند حل المهام البدائية لإيجاد قيم اللوغاريتم، قد لا تكون خصائصه معروفة. ومع ذلك، عندما يتعلق الأمر بالمعادلات اللوغاريتمية أو عدم المساواة، أولا وقبل كل شيء، من الضروري أن نفهم بوضوح ونطبق في الممارسة العملية جميع الخصائص الأساسية لللوغاريتمات. سننظر في أمثلة المعادلات لاحقًا، فلننظر أولاً إلى كل خاصية بمزيد من التفصيل.

  1. الهوية الرئيسية تبدو كالتالي: a logaB =B. وينطبق هذا فقط عندما تكون a أكبر من 0، ولا تساوي واحدًا، وتكون B أكبر من الصفر.
  2. يمكن تمثيل لوغاريتم المنتج بالصيغة التالية: log d (s 1 * s 2) = log d s 1 + log d s 2. في هذه الحالة، الشرط الإلزامي هو: d, s 1 and s 2 > 0; أ≠1. يمكنك تقديم دليل على هذه الصيغة اللوغاريتمية، مع الأمثلة والحل. دعونا سجل a s 1 = f 1 ونسجل a s 2 = f 2، ثم a f1 = s 1، a f2 = s 2. نحصل على أن s 1 * s 2 = a f1 *a f2 = a f1+f2 (خصائص درجات )، ومن ثم حسب التعريف: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2، وهو ما يحتاج إلى إثبات.
  3. يبدو لوغاريتم الحاصل كما يلي: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. تأخذ النظرية في شكل صيغة الشكل التالي: log a q b n = n/q log a b.

تسمى هذه الصيغة "خاصية درجة اللوغاريتم". إنها تشبه خصائص الدرجات العادية، وهذا ليس مفاجئا، لأن كل الرياضيات مبنية على مسلمات طبيعية. دعونا ننظر إلى الدليل.

دعونا سجل أ ب = ر، اتضح أن ر = ب. إذا رفعنا كلا الجزأين للأس m: a tn = b n ;

ولكن بما أن a tn = (a q) nt/q = b n، لذلك سجل a q b n = (n*t)/t، ثم سجل a q b n = n/q سجل a b. لقد تم إثبات النظرية.

أمثلة على المشاكل وعدم المساواة

أكثر أنواع المسائل شيوعًا في اللوغاريتمات هي أمثلة المعادلات والمتباينات. وهي موجودة في جميع كتب المسائل تقريبًا، وهي أيضًا جزء مطلوب من اختبارات الرياضيات. للدخول إلى الجامعة أو اجتياز امتحانات القبول في الرياضيات، عليك أن تعرف كيفية حل هذه المهام بشكل صحيح.

لسوء الحظ، لا توجد خطة أو مخطط واحد لحل وتحديد القيمة المجهولة للوغاريتم، ولكن يمكن تطبيق قواعد معينة على كل متباينة رياضية أو معادلة لوغاريتمية. أولًا، يجب عليك معرفة ما إذا كان من الممكن تبسيط التعبير أو اختزاله إلى صيغة عامة. يمكنك تبسيط التعبيرات اللوغاريتمية الطويلة إذا كنت تستخدم خصائصها بشكل صحيح. دعونا نتعرف عليهم بسرعة.

عند حل المعادلات اللوغاريتمية، يجب علينا تحديد نوع اللوغاريتم الذي لدينا: قد يحتوي تعبير المثال على لوغاريتم طبيعي أو عشري.

وفيما يلي أمثلة ln100، ln1026. يتلخص الحل الذي توصلوا إليه في حقيقة أنهم بحاجة إلى تحديد القدرة التي يساوي فيها الأساس 10 100 و1026 على التوالي. لحل اللوغاريتمات الطبيعية، تحتاج إلى تطبيق الهويات اللوغاريتمية أو خصائصها. دعونا نلقي نظرة على أمثلة لحل المشاكل اللوغاريتمية بأنواعها المختلفة.

كيفية استخدام صيغ اللوغاريتم: مع الأمثلة والحلول

لذلك، دعونا نلقي نظرة على أمثلة لاستخدام النظريات الأساسية حول اللوغاريتمات.

  1. يمكن استخدام خاصية لوغاريتم المنتج في المهام التي يكون فيها من الضروري تحليل قيمة كبيرة للرقم b إلى عوامل أبسط. على سبيل المثال، سجل 2 4 + سجل 2 128 = سجل 2 (4*128) = سجل 2 512. الإجابة هي 9.
  2. سجل 4 8 = سجل 2 2 2 3 = 3/2 سجل 2 2 = 1.5 - كما ترون، باستخدام الخاصية الرابعة لقوة اللوغاريتم، تمكنا من حل تعبير يبدو معقدًا وغير قابل للحل. كل ما عليك فعله هو تحليل الأساس ثم إخراج القيم الأسية من علامة اللوغاريتم.

واجبات من امتحان الدولة الموحدة

غالبا ما توجد اللوغاريتمات في امتحانات القبول، وخاصة العديد من المسائل اللوغاريتمية في امتحان الدولة الموحدة (امتحان الدولة لجميع خريجي المدارس). عادةً ما تكون هذه المهام موجودة ليس فقط في الجزء أ (أسهل جزء اختبار من الامتحان)، ولكن أيضًا في الجزء ج (المهام الأكثر تعقيدًا وحجمًا). يتطلب الامتحان معرفة دقيقة وكاملة بموضوع "اللوغاريتمات الطبيعية".

يتم أخذ الأمثلة والحلول للمشاكل من الإصدارات الرسمية لامتحان الدولة الموحدة. دعونا نرى كيف يتم حل هذه المهام.

بالنظر إلى السجل 2 (2x-1) = 4. الحل:
دعونا نعيد كتابة التعبير، ونبسطه قليلًا log 2 (2x-1) = 2 2، ومن خلال تعريف اللوغاريتم نحصل على 2x-1 = 2 4، وبالتالي 2x = 17؛ س = 8.5.

  • من الأفضل اختزال جميع اللوغاريتمات إلى نفس الأساس حتى لا يكون الحل مرهقًا ومربكًا.
  • تتم الإشارة إلى جميع التعبيرات الموجودة تحت علامة اللوغاريتم على أنها إيجابية، لذلك، عندما يتم إخراج أس التعبير الموجود تحت علامة اللوغاريتم وقاعدته كمضاعف، يجب أن يكون التعبير المتبقي تحت اللوغاريتم موجبًا.