Оценка статистической значимости уравнения регрессии и его параметров. Проверка значимости уравнения регрессии

После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

В этом случае:

а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения -статистики в случае многомерной регрессии имеет вид:

где: - объясненная дисперсия - часть дисперсии зависимой переменной Y которая объяснена уравнением регрессии;

Остаточная дисперсия - часть дисперсии зависимой переменной Y которая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

Число точек в выборке;

Число переменных в уравнении регрессии.

Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая ) число степеней свободы равно . Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение . По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии ).

В результате -критерий для уравнения парной линейной регрессии определяется по формуле:

.

В теории вероятности доказано, что -критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения -критерия можно рассчитать вероятность его появления и наоборот, определить то значение -критерия которое он не сможет превысить с заданной вероятностью.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости .

Уровень значимости – это допустимая вероятность совершить ошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше ), тем выше уровень надежности теста, равный , т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершения ошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

Для выбранного уровня значимости по распределению Фишера определяется табличное значение вероятность превышения, которого в выборке мощностью , полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости. сравнивается с фактическим значением критерия для регрессионного уравнения .

Если выполняется условие , то ошибочное обнаружение связи со значением -критерия равным или большим по выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

Если же оказывается , то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос-

Ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения -критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости , значит уравнение статистически значимо, в противном случае нет.

После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента, определяемый по формулам:

и

где: , - значения критерия Стьюдента для коэффициентов и соответственно;

- остаточная дисперсия уравнения регрессии;

Число точек в выборке;

Число переменных в выборке, для парной линейной регрессии .

Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями , полученными из распределения Стьюдента. Если оказывается, что , то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента и сравнить с уровнем значимости .

Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие .

Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения при известном оценивают по формуле:

Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

В случае если требуется иная доверительная вероятность , то для уровня значимости необходимо найти критерий Стьюдента и доверительный интервал для прогноза с уровнем надежности будет равен .

Прогнозирование многомерных и нелинейных зависимостей

В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

где: - коэффициенты регрессии, описывающие влияние переменных на прогнозируемую величину.

Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией. В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

то замена позволяет преобразовать нелинейную задачу к многомерной линейной вида

Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

превращается в линейную вида

Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

Проверка обоснованности применения метода наименьших квадратов

Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса-Маркова):

3. значения не зависят друг от друга

4. значения не зависят от независимых переменных

Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков в зависимости от , затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.

Проверку значимости уравнения регрессии произведем на основе

F-критерия Фишера:

Значение F-критерия Фишера можно найти в таблице Дисперсионный анализ протокола Еxcel. Табличное значение F-критерия при доверительной вероятности α = 0,95 и числе степеней свободы, равном v1 = k = 2 и v2 = n – k – 1= 50 – 2 – 1 = 47, составляет 0,051.

Поскольку Fрасч > Fтабл, уравнение регрессии следует признать значимым, то есть его можно использовать для анализа и прогнозирования.

Оценку значимости коэффициентов полученной модели, используя результаты отчета Excel, можно осуществить тремя способами.

Коэффициент уравнения регрессии признается значимым в том случае, если:

1) наблюдаемое значение t-статистики Стьюдента для этого коэффициента больше, чем критическое (табличное) значение статистики Стьюдента (для заданного уровня значимости, например α = 0,05, и числа степеней свободы df = n – k – 1, где n – число наблюдений, а k – число факторов в модели);

2) Р-значение t-статистики Стьюдента для этого коэффициента меньше, чем уровень значимости, например, α = 0,05;

3) доверительный интервал для этого коэффициента, вычисленный с некоторой доверительной вероятностью (например, 95%), не содержит ноль внутри себя, то есть нижняя 95% и верхняя 95% границы доверительного интервала имеют одинаковые знаки.

Значимость коэффициентов a 1 и a 2 проверим по второму и третьему способам:

P-значение (a 1 ) = 0,00 < 0,01 < 0,05.

Р-значение (a 2 ) = 0,00 < 0,01 < 0,05.

Следовательно, коэффициенты a 1 и a 2 значимы при 1%-ном уровне, а тем более при 5%-ном уровне значимости. Нижние и верхние 95% границы доверительного интервала имеют одинаковые знаки, следовательно, коэффициенты a 1 и a 2 значимы.

Определение объясняющей переменной, от которой

Может зависеть дисперсия случайных возмущений.

Проверка выполнения условия гомоскедастичности

Остатков по тесту Гольдфельда–Квандта

При проверке предпосылки МНК о гомоскедастичности остатков в модели множественной регрессии следует вначале определить, по отношению к какому из факторов дисперсия остатков более всего нарушена. Это можно сделать в результате визуального исследования графиков остатков, построенных по каждому из факторов, включенных в модель. Та из объясняющих переменных, от которой больше зависит дисперсия случайных возмущений, и будет упорядочена по возрастанию фактических значений при проверке теста Гольдфельда–Квандта. Графики легко получить в отчете, который формируется в результате использования инструмента Регрессия в пакете Анализ данных).

Графики остатков по каждому из факторов двухфакторной модели

Из представленных графиков видно, что дисперсия остатков более всего нарушена по отношению к фактору Краткосрочная дебиторская задолженность.

Проверим наличие гомоскедастичности в остатках двухфакторной модели на основе теста Гольдфельда–Квандта.

    Упорядочим переменные Y и X2 по возрастанию фактора Х4 (в Excel для этого можно использовать команду Данные – Сортировка по возрастанию Х4):

    Данные, отсортированные по возрастанию X4:

  1. Уберем из середины упорядоченной совокупности С = 1/4 · n = 1/4 · 50 = 12,5 (12) значения. В результате получим две совокупности соответственно с малыми и большими значениями Х4.

    Для каждой совокупности выполним расчеты:

Сумма

111234876536,511

966570797682,068

455748832843,413

232578961097,877

834043911651,192

193722998259,505

1246409153509,290

31419681912489,100

2172804245053,280

768665257272,099

2732445494273,330

163253156450,331

18379855056009,900

10336693841766,000

Сумма

69977593738424,600

Уравнения для совокупностей

Y = -27275,746 + 0,126X2 + 1,817 X4

Y = 61439,511 + 0,228X2 + 0,140X4

Результаты данной таблицы получены с помощью инструмента Регрессия поочередно к каждой из полученных совокупностей.

4. Найдем отношение полученных остаточных сумм квадратов

(в числителе должна быть большая сумма):

5. Вывод о наличии гомоскедастичности остатков делаем с помощью F-критерия Фишера с уровнем значимости α = 0,05 и двумя одинаковыми степенями свободы k1 = k2 = == 17

где р – число параметров уравнения регрессии:

Fтабл (0,05; 17; 17) = 9,28.

Так как Fтабл > R ,то подтверждается гомоскедастичность в остатках двухфакторной регрессии.

Для проверки значимости анализируется отношение коэффициента регрессии и его среднеквадратичного отклонения. Это отношение является распределением Стьюдента, то есть для определения значимости используем t – критерий:

- СКО от остаточной дисперсии;

- сумма отклонений от среднего значения

Если t рас. >t таб. , то коэффициент b i является значимым.

Доверительный интервал определяется по формуле:

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

    Взять исходные данные согласно варианту работы (по номеру студента в журнале). Задан статический объект управления с двумя входами X 1 , X 2 и одним выходом Y . На объекте проведен пассивный эксперимент и получена выборка объемом 30 точек, содержащая значения Х 1 , Х 2 и Y для каждого эксперимента.

    Открыть новый файл в Excel 2007. Ввести исходную информацию в столбцы исходной таблицы - значения входных переменных X 1 , Х 2 и выходной переменной Y .

    Подготовить дополнительно два столбца для ввода расчетных значений Y и остатков.

    Вызвать программу «Регрессия»: Данные/ Анализ данных/ Регрессия.

Рис. 1. Диалоговое окно «Анализ данных».

    Ввести в диалоговое окно «Регрессия» адреса исходных данных:

    входной интервал Y, входной интервал X (2 столбца),

    установить уровень надежности 95%,

    в опции «Выходной интервал, указать левую верхнюю ячейку места вывода данных регрессионного анализа (первую ячейку на 2-странице рабочего листа),

    включить опции «Остатки» и «График остатков»,

    нажать кнопку ОК для запуска регрессионного анализа.

Рис. 2. Диалоговое окно «Регрессия».

    Excel выведет 4 таблицы и 2 графика зависимости остатков от переменных Х1 и Х2 .

    Отформатировать таблицу «Вывод итогов» - расширить столбец с наименованиями выходных данных, сделать во втором столбце 3 значащие цифры после запятой.

    Отформатировать таблицу «Дисперсионный анализ»- сделать удобным для чтения и понимания количество значащих цифр после запятых, сократить наименование переменных и настроить ширину столбцов.

    Отформатировать таблицу коэффициентов уравнения - сократить наименование переменных и скорректировать при необходимости ширину столбцов, сделать удобным для чтения и понимания количество значащих цифр, удалить 2 последних столбца (значения и разметку таблицы).

    Данные из таблицы «Вывод остатка» перенести в подготовленные столбцы исходной таблицы, затем таблицу «Вывод остатка» удалить (опция «специальная вставка»).

    Ввести полученные оценки коэффициентов в исходную таблицу.

    Подтянуть таблицы результатов по максимуму вверх страницы.

    Построить под таблицами диаграммы Y эксп , Y расч и ошибки прогноза (остатка).

    Отформатировать диаграммы остатков. По полученным графикам оценить правильность модели по входам Х1, Х2 .

    Распечатать результаты регрессионного анализа.

    Разобраться с результатами регрессионного анализа.

    Подготовить отчет по работе.

ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

Прием выполнения регрессионного анализа в пакете EXCEL представлен на рисунках 3-5.

Рис. 3. Пример регрессионного анализа в пакете EXCEL.


Рис.4 . Графики остатков переменных Х1, Х2

Рис. 5. Графики Y эксп ,Y расч и ошибки прогноза (остатка).

По данным регрессионного анализа можно сказать:

1. Уравнение регрессии полученное с помощью Excel, имеет вид:

    Коэффициент детерминации:

Вариация результата на 46,5% объясняется вариацией факторов.

    Общий F-критерий проверяет гипотезу о статистической значимости уравнения регрессии. Анализ выполняется при сравнении фактического и табличного значения F-критерия Фишера.

Так как фактическое значение превышает табличное
, то делаем вывод, что полученной уравнение регрессии статистически значимо.

    Коэффициент множественной корреляции:

    b 0 :

t таб. (29, 0.975)=2.05

b 0 :

Доверительный интервал:

    Определяем доверительный интервал для коэффициента b 1 :

Проверка значимости коэффициента b 1 :

t рас. >t таб. , коэффициент b 1 является значимым

Доверительный интервал:

    Определяем доверительный интервал для коэффициентаb 2 :

Проверка значимости для коэффициентаb 2 :

Определяем доверительный интервал:

ВАРИАНТЫ ЗАДАНИЙ

Таблица 2. Варианты заданий

№ варианта

Результативный признак Y i

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 1

Y 2

Y 2

Y 2

Y 2

Y 2

№ фактора X i

№ фактора X i

Продолжение таблицы 1

№ варианта

Результативный признак Y i

Y 2

Y 2

Y 2

Y 2

Y 2

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

Y 3

№ фактора X i

№ фактора X i

Таблица 3. Исходные данные

Y 1

Y 2

Y 3

X 1

X 2

X 3

X 4

X 5

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

    Задачи регрессионного анализа.

    Предпосылки регрессионного анализа.

    Основное уравнение дисперсионного анализа.

    Что показывает F- отношение Фишера?

    Как определяется табличное значение критерия Фишера?

    Что показывает коэффициент детерминации?

    Как определить значимость коэффициентов регрессии?

    Как определить доверительный интервал коэффициентов регрессии?

    Как определить расчетные значение t-критерия?

    Как определить табличное значение t-критерия?

    Сформулируйте основную идею дисперсионного анализа, для решения каких задач он наиболее эффективен?

    Каковы основные теоретические предпосылки дисперсионный анализ?

    Произведите разложение общей суммы квадратов отклонений на составляющие в дисперсионном анализе.

    Как получить оценки дисперсий из сумм квадратов отклонений?

    Как получаются необходимые числа степеней свободы?

    Как определяется стандартная ошибка?

    Поясните схему двухфакторного дисперсионного анализа.

    Чем отличается перекрестная классификация от иерархической классификации?

    Чем отличаются сбалансированные данные?

Отчет оформляется в текстовом редакторе Word на бумаге формата А4 ГОСТ 6656-76 (210х297 мм) и содержит:

    Название лабораторной работы.

    Цель работы.

  1. Результаты вычисления.

ВРЕМЯ, ОТВЕДЕННОЕ НА ВЫПОЛНЕНИЕ

ЛАБОРАТОРНОЙ РАБОТЫ

Подготовка к работе – 0,5 акад. часа.

Выполнение работы – 0,5 акад. часа.

Расчеты на ЭВМ – 0,5 акад. часа.

Оформление работы – 0,5 акад. часа.

ЛитЕратура

    Идентификация объектов управления. / А. Д. Семенов, Д. В. Артамонов, А. В. Брюхачев. Учебное пособие. - Пенза: ПГУ, 2003. - 211 с.

    Основы статистического анализа. Практикум по статистическим методам и исследованию операций с использованием пакетов STATISTIC и EXCEL. / Вуколов Э.А. Учебное пособие. - М.: ФОРУМ, 2008. - 464 с.

    Основы теории идентификации объектов управления. / А.А. Игнатьев, С.А. Игнатьев. Учебное пособие. - Саратов: СГТУ, 2008. - 44 с.

    Теория вероятности и математическая статистика в примерах и задачах с применением EXCEL. / Г.В. Горелова, И.А. Кацко. - Ростов н/Д: Феникс, 2006.- 475 с.

    Цель работы 2

    Основные понятия 2

    Порядок выполнения работы 6

    Пример выполнения работы 9

    Вопросы для самоконтроля 13

    Время, отведенное на выполнение работы 14

    После того как уравнение регрессии построено и с помощью коэффициента детерминации оценена его точность, остается открытым вопрос за счет чего достигнута эта точность и соответственно можно ли этому уравнению доверять. Дело в том, что уравнение регрессии строилось не по генеральной совокупности, которая неизвестна, а по выборке из нее. Точки из генеральной совокупности попадают в выборку случайным образом, по этому в соответствии с теорией вероятности среди прочих случаев возможен вариант, когда выборка из “широкой” генеральной совокупности окажется “узкой” (рис. 15).

    Рис. 15. Возможный вариант попадания точек в выборку из генеральной совокупности.

    В этом случае:

    а) уравнение регрессии, построенное по выборке, может значительно отличаться от уравнения регрессии для генеральной совокупности, что приведет к ошибкам прогноза;

    б) коэффициент детерминации и другие характеристики точности окажутся неоправданно высокими и будут вводить в заблуждение о прогнозных качествах уравнения.

    В предельном случае не исключен вариант, когда из генеральной совокупности представляющей собой облако с главной осью параллельной горизонтальной оси (отсутствует связь между переменными) за счет случайного отбора будет получена выборка, главная ось которой окажется наклоненной к оси. Таким образом, попытки прогнозировать очередные значения генеральной совокупности опираясь на данные выборки из нее чреваты не только ошибками в оценке силы и направления связи между зависимой и независимой переменными, но и опасностью найти связь между переменными там, где на самом деле ее нет.

    В условиях отсутствия информации обо всех точках генеральной совокупности единственный способ уменьшить ошибки в первом случае заключается в использовании при оценке коэффициентов уравнения регрессии метода, обеспечивающего их несмещенность и эффективность. А вероятность наступления второго случая может быть значительно снижена благодаря тому, что априори известно одно свойство генеральной совокупности с двумя независимыми друг от друга переменными – в ней отсутствует именно эта связь. Достигается это снижение за счет проверки статистической значимости полученного уравнения регрессии.

    Один из наиболее часто используемых вариантов проверки заключается в следующем. Для полученного уравнения регрессии определяется
    -статистика
    - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии. Уравнение для определения
    -статистики в случае многомерной регрессии имеет вид:

    где:
    - объясненная дисперсия - часть дисперсии зависимой переменнойYкоторая объяснена уравнением регрессии;

    -остаточная дисперсия - часть дисперсии зависимой переменнойYкоторая не объяснена уравнением регрессии, ее наличие является следствием действия случайной составляющей;

    - число точек в выборке;

    - число переменных в уравнении регрессии.

    Как видно из приведенной формулы, дисперсии определяются как частное от деления соответствующей суммы квадратов на число степеней свободы. Число степеней свободы это минимально необходимое число значений зависимой переменной, которых достаточно для получения искомой характеристики выборки и которые могут свободно варьироваться с учетом того, что для этой выборки известны все другие величины, используемые для расчета искомой характеристики.

    Для получения остаточной дисперсии необходимы коэффициенты уравнения регрессии. В случае парной линейной регрессии коэффициентов два, по этому в соответствии с формулой (принимая
    ) число степеней свободы равно
    . Имеется в виду, что для определения остаточной дисперсии достаточно знать коэффициенты уравнения регрессии и только
    значений зависимой переменной из выборки. Оставшиеся два значения могут быть вычислены на основании этих данных, а значит, не являются свободно варьируемыми.

    Для вычисления объясненной дисперсии значений зависимой переменной вообще не требуются, так как ее можно вычислить, зная коэффициенты регрессии при независимых переменных и дисперсию независимой переменной. Для того чтобы убедиться в этом, достаточно вспомнить приводившееся ранее выражение
    . По этому число степеней свободы для остаточной дисперсии равно числу независимых переменных в уравнении регрессии (для парной линейной регрессии
    ).

    В результате
    -критерий для уравнения парной линейной регрессии определяется по формуле:

    .

    В теории вероятности доказано, что
    -критерий уравнения регрессии, полученного для выборки из генеральной совокупности у которой отсутствует связь между зависимой и независимой переменной имеет распределение Фишера, достаточно хорошо изученное. Благодаря этому для любого значения
    -критерия можно рассчитать вероятность его появления и наоборот, определить то значение
    -критерия которое он не сможет превысить с заданной вероятностью.

    Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

    Уровень значимости – это допустимая вероятность совершитьошибку первого рода – отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет.

    Обычно уровень значимости принимается равным 5% или 1%. Чем выше уровень значимости (чем меньше
    ), тем вышеуровень надежности теста, равный
    , т.е. тем больше шанс избежать ошибки признания по выборке наличия связи у генеральной совокупности на самом деле несвязанных между собой переменных. Но с ростом уровня значимости возрастает опасность совершенияошибки второго рода – отвергнуть верную нулевую гипотезу, т.е. не заметить по выборке имеющуюся на самом деле связь переменных в генеральной совокупности. По этому, в зависимости от того, какая ошибка имеет большие негативные последствия, выбирают тот или иной уровень значимости.

    Для выбранного уровня значимости по распределению Фишера определяется табличное значение
    вероятность превышения, которого в выборке мощностью, полученной из генеральной совокупности без связи между переменными, не превышает уровня значимости.
    сравнивается с фактическим значением критерия для регрессионного уравнения.

    Если выполняется условие
    , то ошибочное обнаружение связи со значением
    -критерия равным или большимпо выборке из генеральной совокупности с несвязанными между собой переменными будет происходить с вероятностью меньшей чем уровень значимости. В соответствии с правилом “очень редких событий не бывает”, приходим к выводу, что установленная по выборке связь между переменными имеется и в генеральной совокупности, из которой она получена.

    Если же оказывается
    , то уравнение регрессии статистически не значимо. Иными словами существует реальная вероятность того, что по выборке установлена не существующая в реальности связь между переменными. К уравнению, не выдержавшему проверку на статистическую значимость, относятся так же, как и к лекарству с истекшим сроком годнос- ти – такие лекарства не обязательно испорчены, но раз нет уверенности в их качестве, то их предпочитают не использовать. Это правило не уберегает от всех ошибок, но позволяет избежать наиболее грубых, что тоже достаточно важно.

    Второй вариант проверки, более удобный в случае использования электронных таблиц, это сопоставление вероятности появления полученного значения
    -критерия с уровнем значимости. Если эта вероятность оказывается ниже уровня значимости
    , значит уравнение статистически значимо, в противном случае нет.

    После того как выполнена проверка статистической значимости регрессионного уравнения в целом полезно, особенно для многомерных зависимостей осуществить проверку на статистическую значимость полученных коэффициентов регрессии. Идеология проверки такая же как и при проверке уравнения в целом но в качестве критерия используется -критерий Стьюдента , определяемый по формулам:

    и

    где: , - значения критерия Стьюдента для коэффициентовисоответственно;

    - остаточная дисперсия уравнения регрессии;

    - число точек в выборке;

    - число переменных в выборке, для парной линейной регрессии
    .

    Полученные фактические значения критерия Стьюдента сравниваются с табличными значениями
    , полученными из распределения Стьюдента. Если оказывается, что
    , то соответствующий коэффициент статистически значим, в противном случае нет. Второй вариант проверки статистической значимости коэффициентов – определить вероятность появления критерия Стьюдента
    и сравнить с уровнем значимости
    .

    Для переменных, чьи коэффициенты оказались статистически не значимы, велика вероятность того, что их влияние на зависимую переменную в генеральной совокупности вообще отсутствует. По этому или необходимо увеличить число точек в выборке, тогда возможно коэффициент станет статистически значимым и заодно уточнится его значение, или в качестве независимых переменных найти другие, более тесно связанные с зависимой переменной. Точность прогнозирования при этом в обоих случаях возрастет.

    В качестве экспрессного метода оценки значимости коэффициентов уравнения регрессии можно применять следующее правило – если критерий Стьюдента больше 3, то такой коэффициент, как правило, оказывается статистически значим. А вообще считается, что для получения статистически значимых уравнений регрессии необходимо, чтобы выполнялось условие
    .

    Стандартная ошибка прогнозирования по полученному уравнению регрессии неизвестного значения
    при известном
    оценивают по формуле:

    Таким образом прогноз с доверительной вероятностью 68% может быть представлен в виде:

    В случае если требуется иная доверительная вероятность
    , то для уровня значимости
    необходимо найти критерий Стьюдента
    идоверительный интервал для прогноза с уровнем надежности
    будет равен
    .

    Прогнозирование многомерных и нелинейных зависимостей

    В случае если прогнозируемая величина зависит от нескольких независимых переменных, то в этом случае имеется многомерная регрессия вида:

    где:
    - коэффициенты регрессии, описывающие влияние переменных
    на прогнозируемую величину.

    Методика определения коэффициентов регрессии не отличается от парной линейной регрессии, особенно при использовании электронной таблицы, так как там применяется одна и та же функция и для парной и для многомерной линейной регрессии. При этом желательно чтобы между независимыми переменными отсутствовали взаимосвязи, т.е. изменение одной переменной не сказывалось на значениях других переменных. Но это требование не является обязательным, важно чтобы между переменными отсутствовали функциональные линейные зависимости. Описанные выше процедуры проверки статистической значимости полученного уравнения регрессии и его отдельных коэффициентов, оценка точности прогнозирования остается такой же как и для случая парной линейной регрессии. В тоже время применение многомерных регрессий вместо парной обычно позволяет при надлежащем выборе переменных существенно повысить точность описания поведения зависимой переменной, а значит и точность прогнозирования.

    Кроме этого уравнения многомерной линейной регрессии позволяют описать и нелинейную зависимость прогнозируемой величины от независимых переменных. Процедура приведения нелинейного уравнения к линейному виду называется линеаризацией . В частности если эта зависимость описывается полиномом степени отличной от 1, то, осуществив замену переменных со степенями отличными от единицы на новые переменные в первой степени, получаем задачу многомерной линейной регрессии вместо нелинейной. Так, например если влияние независимой переменной описывается параболой вида

    то замена
    позволяет преобразовать нелинейную задачу к многомерной линейной вида

    Так же легко могут быть преобразованы нелинейные задачи у которых нелинейность возникает вследствие того, что прогнозируемая величина зависит от произведения независимых переменных. Для учета такого влияния необходимо ввести новую переменную равную этому произведению.

    В тех случаях, когда нелинейность описывается более сложными зависимостями, линеаризация возможна за счет преобразования координат. Для этого рассчитываются значения
    и строятся графики зависимости исходных точек в различных комбинациях преобразованных переменных. Та комбинация преобразованных координат или преобразованных и не преобразованных координат, в которой зависимость ближе всего к прямой линии подсказывает замену переменных которая приведет к преобразованию нелинейной зависимости к линейному виду. Например, нелинейная зависимость вида

    превращается в линейную вида

    где:
    ,
    и
    .

    Полученные коэффициенты регрессии для преобразованного уравнения остаются несмещенными и эффективными, но проверка статистической значимости уравнения и коэффициентов невозможна

    Проверка обоснованности применения метода наименьших квадратов

    Применение метода наименьших квадратов обеспечивает эффективность и несмещенность оценок коэффициентов уравнения регрессии при соблюдении следующих условий (условий Гауса -Маркова ):

    1.

    2.

    3. значения не зависят друг от друга

    4. значения не зависят от независимых переменных

    Наиболее просто можно проверить соблюдение этих условий путем построения графиков остатков
    в зависимости от, затем от независимой (независимых) переменных. Если точки на этих графиках расположены в коридоре расположенном симметрично оси абсцисс и в расположении точек не просматриваются закономерности, то условия Гауса-Маркова выполнены и возможности повысить точность уравнения регрессии отсутствуют. Если это не так, то существует возможность существенно повысить точность уравнения и для этого необходимо обратиться к специальной литературе.

    Проверить значимость параметров уравнения регрессии можно, используя t-статистику .

    Задание:
    По группе предприятий, выпускающих один и тот же вид продукции, рассматриваются функции издержек:
    y = α + βx;
    y = α x β ;
    y = α β x ;
    y = α + β / x;
    где y – затраты на производство, тыс. д. е.
    x – выпуск продукции, тыс. ед.

    Требуется:
    1. Построить уравнения парной регрессии y от x:

    • линейное;
    • степенное;
    • показательное;
    • равносторонней гиперболы.
    2. Рассчитать линейный коэффициент парной корреляции и коэффициент детерминации . Сделать выводы.
    3. Оценить статистическую значимость уравнения регрессии в целом.
    4. Оценить статистическую значимость параметров регрессии и корреляции.
    5. Выполнить прогноз затрат на производство при прогнозном выпуске продукции, составляющем 195 % от среднего уровня.
    6. Оценить точность прогноза, рассчитать ошибку прогноза и его доверительный интервал.
    7. Оценить модель через среднюю ошибку аппроксимации.

    Решение :

    1. Уравнение имеет вид y = α + βx
    1. Параметры уравнения регрессии.
    Средние значения

    Дисперсия

    Среднеквадратическое отклонение

    Коэффициент корреляции

    Связь между признаком Y фактором X сильная и прямая
    Уравнение регрессии

    Коэффициент детерминации
    R 2 = 0.94 2 = 0.89, т.е. в 88.9774 % случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая

    x y x 2 y 2 x ∙ y y(x) (y-y cp) 2 (y-y(x)) 2 (x-x p) 2
    78 133 6084 17689 10374 142.16 115.98 83.83 1
    82 148 6724 21904 12136 148.61 17.9 0.37 9
    87 134 7569 17956 11658 156.68 95.44 514.26 64
    79 154 6241 23716 12166 143.77 104.67 104.67 0
    89 162 7921 26244 14418 159.9 332.36 4.39 100
    106 195 11236 38025 20670 187.33 2624.59 58.76 729
    67 139 4489 19321 9313 124.41 22.75 212.95 144
    88 158 7744 24964 13904 158.29 202.51 0.08 81
    73 152 5329 23104 11096 134.09 67.75 320.84 36
    87 162 7569 26244 14094 156.68 332.36 28.33 64
    76 159 5776 25281 12084 138.93 231.98 402.86 9
    115 173 13225 29929 19895 201.86 854.44 832.66 1296
    0 0 0 16.3 20669.59 265.73 6241
    1027 1869 89907 294377 161808 1869 25672.31 2829.74 8774

    Примечание: значения y(x) находятся из полученного уравнения регрессии:
    y(1) = 4.01*1 + 99.18 = 103.19
    y(2) = 4.01*2 + 99.18 = 107.2
    ... ... ...

    2. Оценка параметров уравнения регрессии
    Значимость коэффициента корреляции

    По таблице Стьюдента находим Tтабл
    T табл (n-m-1;α/2) = (11;0.05/2) = 1.796
    Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

    Анализ точности определения оценок коэффициентов регрессии





    S a = 0.1712
    Доверительные интервалы для зависимой переменной

    Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X = 1
    (-20.41;56.24)
    Проверка гипотез относительно коэффициентов линейного уравнения регрессии
    1) t-статистика


    Статистическая значимость коэффициента регрессии a подтверждается

    Статистическая значимость коэффициента регрессии b не подтверждается
    Доверительный интервал для коэффициентов уравнения регрессии
    Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
    (a - t S a ; a + t S a)
    (1.306;1.921)
    (b - t b S b ; b + t b S b)
    (-9.2733;41.876)
    где t = 1.796
    2) F-статистики


    Fkp = 4.84
    Поскольку F > Fkp, то коэффициент детерминации статистически значим